poj 3293 Rectilinear polygon
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 2125 | Accepted: 249 |
Description
Given is n points with integer coordinates in the plane. Is it is possible to construct a simple, that is non-intersecting, rectilinear polygon with the given points as vertices? In a rectilinear polygon there are at least 4 vertices and every edge is either horizontal or vertical; each vertex is an endpoint of exactly one horizontal edge and one vertical edge. There are no holes in a polygon.
Input
The first line of input is an integer giving the number of cases that follow. The input of each case starts with an integer 4 ≤ n ≤ 100000 giving the number of points for this test case. It is followed by n pairs of integers specifying the x and y coordinates of the points for this case.
Output
The output should contain one line for each case on input. Each line should contain one integer number giving the length of the rectilinear polygon passing throught the given points when it exists; otherwise, it should contain -1.
Sample Input
1 8 1 2 1 0 2 1 2 2 3 2 3 1 4 0 4 2
Sample Output
12
題意:平面圖上給出一些點的坐標,通過這些點希望構成一類多邊形,多邊形中間沒有洞,並且每個點是且僅是該多邊形的一條橫邊和一條豎邊的端點,且橫邊豎邊不相交(橫豎邊共用一個端點的情況除外),若給出的那些點能構成符合要求的多邊形,
那麽計算多邊形的周長,否則輸出-1.
思路:平面掃描,按照x軸掃描可以獲得所有豎邊的長度和,按y軸的同理,先討論x軸的情況,將點按照x坐標大小排序後,同一列上的點按照y坐標從小到大排序,之後再觀察多邊形每一列的特性,可以發現每一列上點必定偶數個,相鄰兩個配對可以成為一條邊,若出現奇數條邊,肯定是構不成多邊形的。按y軸掃描
也是相同做法。其次還要判斷是否有橫豎邊相交的情況以及是否有洞(圖是否連通)即可。
AC代碼:
#define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<stdio.h> #include<algorithm> #include<queue> #include<set> #include<vector> #include<cstring> #include<string> #include<functional> #include<cmath> #include<stack> using namespace std; const int N_MAX = 100000 + 5; #define INF 0x3f3f3f3f #define EPS 1e-10 #define equals(a,b) (fabs(a-b)<EPS) static const int COUNTER_CLOCKWISE = -1; static const int CLOCKWISE = 1; static const int ONLINE_BACK = 2; static const int ONLINE_FRONT = -2; static const int ON_SEGMENT = 0; int n;//點的數量 int link_x[N_MAX], link_y[N_MAX]; class point { public: int x, y; int id; point(int x = 0, int y = 0, int id = 0) :x(x), y(y), id(id) {} int get(const bool& is_x) {//用於雙向掃描 return is_x ? x : y; } void link(const point& b, const bool& is_x) {//當前點與點b相連,!!!!不是必須 (is_x ? link_x[id] : link_y[id]) = b.id; (is_x ? link_x[b.id] : link_y[b.id]) = id; } int get_link(const bool &is_x) { return is_x ? link_x[id] : link_y[id]; } point operator +(point p) { return point(x + p.x, y + p.y); } point operator -(point p) { return point(x - p.x, y - p.y); } point operator *(double a) { return point(a*x, a*y); } point operator /(double a) { return point(x / a, y / a); } double norm() { return x*x + y*y; } double abs() { return sqrt(norm()); } bool operator<(const point&p)const { return x != p.x ? x < p.x : y < p.y; } bool operator ==(const point&p)const { return x == p.x && y == p.y; } double dot(point p) { return x*p.x + y*p.y; } double det(point p) { return x*p.y - y*p.x; } }P[N_MAX]; bool is_x; bool cmp( point a, point b) { int ax = a.get(is_x); int ay = a.get(!is_x); int bx = b.get(is_x); int by = b.get(!is_x); if (ax != bx) { return ax < bx; } else return ay < by; } typedef point Vector; struct Segment { point p1, p2; Segment(point p1 = point(), point p2 = point()) :p1(p1), p2(p2) {} }; //vector<Segment>S_x; Segment S_x[N_MAX]; typedef Segment line; class Circle { public: point c; double r; Circle(point c = point(), double r = 0.0) :c(c), r(r) {} }; typedef vector<point>Polygon; //p在線段s上的投影 point project(Segment s, point p) { Vector base = s.p2 - s.p1; double r = base.dot(p - s.p1) / base.norm(); return s.p1 + base*r; } //點p關於直線s的對稱點 point reflect(Segment s, point p) { return p + (project(s, p) - p)*2.0; } //點與點間距離 double getDistance(point a, point b) { return (a - b).abs(); } //點到直線距離 double getDistanceLP(line l, point p) { return fabs((l.p1 - l.p2).det(p - l.p1)) / ((l.p2 - l.p1).abs()); } //點到線段的距離 double getDistanceSP(Segment s, point p) { if ((s.p2 - s.p1).dot(p - s.p1) < 0.0)return (p - s.p1).abs(); if ((s.p1 - s.p2).dot(p - s.p2) < 0.0)return (p - s.p2).abs();//!!!!! return getDistanceLP(s, p); } //判斷線段p0p1與線段p0p2的旋轉關系 int ccw(point p0, point p1, point p2) { Vector a = p1 - p0; Vector b = p2 - p0; if (a.det(b) > EPS)return COUNTER_CLOCKWISE; if (a.det(b) < -EPS)return CLOCKWISE; if (a.dot(b) < -EPS)return ONLINE_BACK; if (a.norm() >= b.norm())return ON_SEGMENT;//!! return ONLINE_FRONT; } //判斷線段p1p2與p3p4是否相交 bool intersect(point p1, point p2, point p3, point p4) { return (ccw(p1, p2, p3)*ccw(p1, p2, p4) < 0 &&//!!! ccw(p3, p4, p1)*ccw(p3, p4, p2) < 0); } //線段是否相交 bool intersect(Segment s1, Segment s2) { return intersect(s1.p1, s1.p2, s2.p1, s2.p2); } typedef vector<point>Polygon; bool judge_intersect(const Segment&a,const int&amount) { int y = a.p1.y, x1 = a.p1.x, x2 = a.p2.x; for (int i = 0; i <amount;i++) { if (y > S_x[i].p1.y&&y < S_x[i].p2.y&&x1<S_x[i].p1.x&&x2>S_x[i].p2.x) { return true; } } return false; } int traverse(int&amount) {//返回總長度,不符條件-1 sort(P, P + n, cmp);//!!!!每次掃描前先排序 int count = 1, sum = 0; for (int i = 1; i < n; i++) {//遍歷每一個點 if (P[i].get(is_x)!=P[i - 1].get(is_x)) {//到了新的掃描層 if (count & 1)return -1; count = 1; } else { count++; if (!(count & 1)) { sum += P[i].get(!is_x) - P[i - 1].get(!is_x); P[i].link(P[i - 1], is_x); if (is_x) {//若是橫向掃描,直接記錄連接好的線段 S_x[amount++]=Segment(P[i-1], P[i]); } else {//豎向掃描,判斷當前連接線段是否和上面的記錄的線段相交 if (judge_intersect(Segment(P[i-1],P[i]),amount)) { return -1; } } } } } return sum; } int solve() { int amount = 0;//記錄連邊的個數 is_x=1; int num_x = traverse(amount); if (num_x == -1)return -1;//!!!! is_x =0; int num_y = traverse(amount); if (num_y == -1)return -1; int loop = 0,count=0; do {//判斷不聯通的圖 loop = is_x ? link_x[loop] : link_y[loop]; count++; is_x = !is_x; } while (loop != 0); if (count != n)return -1; return num_x + num_y; } int main() { int t; scanf("%d", &t); while (t--) { scanf("%d", &n); for (int i = 0; i < n; i++) { int x, y; scanf("%d%d", &x, &y); P[i] = point(x, y, i); } printf("%d\n",solve()); } return 0; }
poj 3293 Rectilinear polygon