1. 程式人生 > >codeforces 842C Ilya And The Tree

codeforces 842C Ilya And The Tree

直接 ber all 之前 tro numbers href cout graphs

Ilya is very fond of graphs, especially trees. During his last trip to the forest Ilya found a very interesting tree rooted at vertex 1. There is an integer number written on each vertex of the tree; the number written on vertex i is equal to ai.

Ilya believes that the beauty of the vertex x is the greatest common divisor of all numbers written on the vertices on the path from the root to x

, including this vertex itself. In addition, Ilya can change the number in one arbitrary vertex to 0 or leave all vertices unchanged. Now for each vertex Ilya wants to know the maximum possible beauty it can have.

For each vertex the answer must be considered independently.

The beauty of the root equals to number written on it.

給出一棵生成樹,每個節點都有一個值,現在要求出每個節點的美麗值的最大值,美麗值的定義為從根節點到該節點(包含)路徑上所有點的值的gcd,求解每個 點時可以把路徑上某一個點的值變為0(就相當於刪除這個節點的數)。你可以認為每個點美麗值的求解是獨立的(每次刪除的點都不會影響下一次)。

Input

First line contains one integer number n — the number of vertices in tree (1?≤?n?≤?2·105).

Next line contains n integer numbers ai (1?≤?i?≤?n, 1?≤?ai?≤?2·105

).

Each of next n?-?1 lines contains two integer numbers x and y (1?≤?x,?y?≤?n, x?≠?y), which means that there is an edge (x,?y) in the tree.

Output

Output n numbers separated by spaces, where i-th number equals to maximum possible beauty of vertex i.

Examples Input
2
6 2
1 2
Output
6 6 
Input
3
6 2 3
1 2
1 3
Output
6 6 6 
Input
1
10
Output
10 

我們用c[i]表示從1~i不變化的gcd值

用set[i]表示已變化的gcd的值的集合

對於u->v有

set[v].insert(c[u])表示將v變化

set[v][]=gcd(set[u][i],a[v])在v之前已變化

但這樣可能存在疑問,每一次的集合都增加一個,而且還要遍歷

這豈不是n^2???

但set去重後數量卻遠遠達不到n,也就√n

因為a[x]的因數總共就不超過√a[x]個,不可能超過這麽多,而a[x]<=20^5

所以可以過

輸出直接輸出集合中最大的數

代碼這裏用了STL中的集合

%%%%yzh巨佬用n^2暴力強行過:

http://www.cnblogs.com/Yuzao/p/7451552.html

果然巨佬還是強無敵啊

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<set>
 6 using namespace std;
 7 struct Node
 8 {
 9   int next,to;
10 }edge[400001];
11 int num,head[200001],c[200001],a[200001],n;
12 set<int>Set[200001];
13 void add(int u,int v)
14 {
15   num++;
16   edge[num].next=head[u];
17   head[u]=num;
18   edge[num].to=v;
19 }
20 int gcd(int a,int b)
21 {
22   if (!b) return a;
23   return gcd(b,a%b);
24 }
25 void dfs(int x,int pa)
26 {
27   for (int i=head[x];i;i=edge[i].next)
28     {
29       int v=edge[i].to;
30       if (v==pa) continue;
31       c[v]=gcd(c[x],a[v]);
32       Set[v].insert(c[x]);
33       for (set<int>::iterator i=Set[x].begin();i!=Set[x].end();i++)
34     Set[v].insert(gcd(a[v],*i));
35       dfs(v,x);
36     }
37 }
38 int main()
39 {int i,u,v;
40   cin>>n;
41   for (i=1;i<=n;i++)
42     {
43       scanf("%d",&a[i]);
44     }
45   for (i=1;i<=n-1;i++)
46     {
47       scanf("%d%d",&u,&v);
48       add(u,v);add(v,u);
49     }
50   c[1]=a[1];
51   Set[1].insert(0);
52   dfs(1,0);
53   cout<<a[1]<< ;
54   for (i=2;i<n;i++)
55     printf("%d ",*(--Set[i].end()));
56   if (n>1)
57   cout<<*(--Set[n].end())<<endl;
58 }

codeforces 842C Ilya And The Tree