11.4 考試
阿新 • • 發佈:2017-11-04
但是 abs 個人 return spa ring string algo lca
最近好爆炸啊,我已經做好隨時退役的準備了...
T1 kill
題意:
給一個集合點,n個人,m個怪,在一條直線上,n<=m,每人一個怪,每個怪只被打一次,問所有走的路程的最大值的最小值
大家覺得這個題好簡單啊,但是我怎麽覺得好難啊
於是我就打了一個貪心加反悔$O(n^2logn)$,因為數據水,對了9個點,T了一個點QAQ...
大佬們都打了$O(nlogn)$的優秀算法
先把人和怪都排序
二分ans
貪心選擇最左邊的怪..
好像也挺簡單
#include <cstdio> #include <cstring> #include <cstdlib> #includeT1<algorithm> #include <iostream> #define mem(a,b) memset(a,b,sizeof(a)) #define ll long long #define rint register int using namespace std; inline void read(int &x) { x=0; int ff=1; char q=getchar(); while(q<‘0‘||q>‘9‘) { if(q==‘-‘) ff=-1; q=getchar(); } while(q>=‘0‘&&q<=‘9‘) x=x*10+q-‘0‘,q=getchar(); x*=ff; } inline void readll(ll &x) { x=0; int ff=1; char q=getchar(); while(q<‘0‘||q>‘9‘) { if(q==‘-‘) ff=-1; q=getchar(); } while(q>=‘0‘&&q<=‘9‘) x=x*10+q-‘0‘,q=getchar(); x*=ff; } const int N=5006; int n,m; ll S,p[N],q[N];int check(ll x) { int i,l=1; for(i=1;i<=n;++i) { while( l<=m&&abs(p[i]-q[l])+abs(q[l]-S)>x ) ++l; if(l>m) return 0; ++l; } return 1; } ll work() { ll l=0,r=1e10,mid,ans=1e10; while(l<=r) { mid=(l+r)>>1; if(check(mid)) ans=mid,r=mid-1; else l=mid+1; } return ans; } int main(){ //freopen("T1.in","r",stdin); rint i; read(n); read(m); readll(S); for(i=1;i<=n;++i) readll(p[i]); for(i=1;i<=m;++i) readll(q[i]); sort(p+1,p+1+n); sort(q+1,q+1+m); printf("%lld\n",work()); }
T2 beauty
題意:
n個節點的一棵樹,給2*K個關鍵點
求$\sum_{i|關鍵點}dis(u_i,v_i)$的最大值
又沒做出來,郁悶ing~~~
把問題轉化成 求LCA的深度之和最小值
考慮到一個節點,如果它的每一個兒子子樹中關鍵點的個數都<=$\frac{size_x}{2}$
那麽x這顆子樹中的關鍵點兩兩配對的LCA都可以是x
dfs一遍就行了
#include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #include <iostream> #define mem(a,b) memset(a,b,sizeof(a)) #define ll long long #define rint register int using namespace std; inline void read(int &x) { x=0; int ff=1; char q=getchar(); while(q<‘0‘||q>‘9‘) { if(q==‘-‘) ff=-1; q=getchar(); } while(q>=‘0‘&&q<=‘9‘) x=x*10+q-‘0‘,q=getchar(); x*=ff; } const int N=100006; int first[N],nt[N<<1],ver[N<<1],e; void addbian(int u,int v) { ver[e]=v; nt[e]=first[u]; first[u]=e++; } int n,K,op,allk; int ans; int ke[N]; int fa[N],size[N],dep[N]; void dfs1(int x) { int i; for(i=first[x];i!=-1;i=nt[i]) if(ver[i]!=fa[x]) { fa[ver[i]]=x; dep[ver[i]]=dep[x]+1; dfs1(ver[i]); size[x]+=size[ver[i]]; } } void dfs(int x,int le) { //printf("x=%d le=%d size[x]=%d\n",x,le,size[x]); int i,id=0; for(i=first[x];i!=-1;i=nt[i]) if(ver[i]!=fa[x]&&size[ver[i]]*2>size[x]) id=ver[i]; if(!id) ans-=(size[x]-le)*dep[x]; else { if( (size[id]-le)*2<=size[x]-le ) ans-=(size[x]-le)*dep[x]; else { ans-=(size[x]-size[id])*2*dep[x]; dfs(id,le+size[x]-size[id]); } } } int main(){ //freopen("T2.in","r",stdin); //freopen("T2.out","w",stdout); rint i; int tin1,tin2; mem(first,-1); read(n); read(K); read(op); allk=K<<1; for(i=1;i<=allk;++i) read(ke[i]),size[ke[i]]=1; for(i=1;i<n;++i) { read(tin1); read(tin2); addbian(tin1,tin2); addbian(tin2,tin1); } fa[1]=-1; dfs1(1); for(i=1;i<=allk;++i) ans+=dep[ke[i]]; dfs(1,0); printf("%d\n",ans); }T2
T3 weight
給一個n個點,m條邊的無向帶權圖,問每一條邊權值最大多少使得這條邊在所有的最小生成樹裏(數據不保證圖聯通)
考慮先把最小生成樹建出來
如果是樹邊,ans是兩個端點之間所有簡單路徑的最小值-1
對於非樹邊,ans是這條邊兩個端點間樹上邊的最大值-1
#include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #include <iostream> #define mem(a,b) memset(a,b,sizeof(a)) #define ll long long #define rint register int using namespace std; inline void read(int &x) { x=0; int ff=1; char q=getchar(); while(q<‘0‘||q>‘9‘) { if(q==‘-‘) ff=-1; q=getchar(); } while(q>=‘0‘&&q<=‘9‘) x=x*10+q-‘0‘,q=getchar(); x*=ff; } const int N=100006; const int Inf=2e9; int first[N],nt[N<<1],ver[N<<1],w[N<<1],id[N<<1],e; void addbian(int u,int v,int _w,int _id) { ver[e]=v; w[e]=_w; id[e]=_id; nt[e]=first[u]; first[u]=e++; } struct HSDAS { int first[N],nt[N<<1],ver[N<<1],e; void clear() { mem(first,-1); } void addbian(int u,int v) { ver[e]=v; nt[e]=first[u]; first[u]=e++; } }h; struct JI { int u,v,w,order; JI(){} JI(int _u,int _v,int _w,int _order) { u=_u; v=_v; w=_w; order=_order; } bool friend operator < (JI a,JI b) { return a.w<b.w; } }ji[N]; int n,m,op; bool isis[N],istree[N]; int uu[N],vv[N],ww[N]; int v[N],fan[N]; int mn[N<<2],mx[N<<2],laz[N<<2]; void pushdown(int x) { if(laz[x]!=Inf) { if(laz[x<<1]>laz[x]) laz[x<<1]=laz[x]; if(laz[x<<1|1]>laz[x]) laz[x<<1|1]=laz[x]; if(mn[x<<1]>laz[x]) mn[x<<1]=laz[x]; if(mn[x<<1|1]>laz[x]) mn[x<<1|1]=laz[x]; laz[x]=Inf; } } void build(int l,int r,int x) { laz[x]=Inf; if(l==r) { mn[x]=Inf; mx[x]=v[fan[l]]; return ; } int mid=(l+r)>>1; build(l,mid,x<<1); build(mid+1,r,x<<1|1); mx[x]=max(mx[x<<1],mx[x<<1|1]); } void qqmax(int L,int R,int &an,int l,int r,int x) { if(L<=l&&r<=R) { if(an<mx[x]) an=mx[x]; return ; } int mid=(l+r)>>1; if(L<=mid) qqmax(L,R,an,l,mid,x<<1); if(mid<R) qqmax(L,R,an,mid+1,r,x<<1|1); } void qqmin(int pos,int &an,int l,int r,int x) { if(l==r) { if(an>mn[x]) an=mn[x]; return ; } pushdown(x); int mid=(l+r)>>1; if(pos<=mid) qqmin(pos,an,l,mid,x<<1); else qqmin(pos,an,mid+1,r,x<<1|1); } void modi(int L,int R,int vv,int l,int r,int x) { if(L<=l&&r<=R) { if(mn[x]>vv) mn[x]=vv; if(laz[x]>vv) laz[x]=vv; return ; } pushdown(x); int mid=(l+r)>>1; if(L<=mid) modi(L,R,vv,l,mid,x<<1); if(mid<R) modi(L,R,vv,mid+1,r,x<<1|1); mn[x]=min(mn[x<<1],mn[x<<1|1]); } int fa[N],dep[N],size[N],son[N]; void dfs1(int x) { size[x]=1; int i; //printf("x=%d\n",x); for(i=h.first[x];i!=-1;i=h.nt[i]) { //printf("i=%d\n",i); isis[(i>>1)+1]=1; //printf("i=%d\n",i); } //printf("x=%d\n",x); for(i=first[x];i!=-1;i=nt[i]) if(ver[i]!=fa[x]) { fa[ver[i]]=x; dep[ver[i]]=dep[x]+1; v[ver[i]]=w[i]; dfs1(ver[i]); size[x]+=size[ver[i]]; if(size[son[x]]<size[ver[i]]) son[x]=ver[i]; } } int dfn[N],tim,top[N]; void dfs2(int x,int tp) { top[x]=tp; dfn[x]=++tim; fan[tim]=x; if(son[x]) dfs2(son[x],tp); int i; for(i=first[x];i!=-1;i=nt[i]) if(ver[i]!=fa[x]&&ver[i]!=son[x]) dfs2(ver[i],ver[i]); } void Modi(int x,int y,int vv) { int fx=top[x],fy=top[y]; while(fx!=fy) { if(dep[fx]<dep[fy]) x^=y,y^=x,x^=y, fx^=fy,fy^=fx,fx^=fy; modi(dfn[fx],dfn[x],vv,1,n,1); x=fa[fx]; fx=top[x]; } if(dep[x]>dep[y]) x^=y,y^=x,x^=y; if(x!=y) modi(dfn[x]+1,dfn[y],vv,1,n,1); } int QQMAX(int x,int y) { int fx=top[x],fy=top[y],an=0; while(fx!=fy) { if(dep[fx]<dep[fy]) x^=y,y^=x,x^=y, fx^=fy,fy^=fx,fx^=fy; qqmax(dfn[fx],dfn[x],an,1,n,1); x=fa[fx]; fx=top[x]; } if(dep[x]>dep[y]) x^=y,y^=x,x^=y; if(x!=y) qqmax(dfn[x]+1,dfn[y],an,1,n,1); return an; } int bfa[N]; int fin(int x) { if(bfa[x]==-1) return x; return bfa[x]=fin(bfa[x]); } void kru() { sort(ji+1,ji+1+m); int x,y,nownum=0,i; for(i=1;i<=m;++i) { x=fin(ji[i].u); y=fin(ji[i].v); if(x!=y) { bfa[x]=y; istree[ji[i].order]=1; addbian(ji[i].u,ji[i].v,ji[i].w,ji[i].order); addbian(ji[i].v,ji[i].u,ji[i].w,ji[i].order); ++nownum; } if(nownum==n-1) break; } } int main(){ //freopen("T3.in","r",stdin); rint i; int tt; h.clear(); mem(bfa,-1); mem(first,-1); read(n); read(m); read(op); for(i=1;i<=m;++i) { read(uu[i]); read(vv[i]); read(ww[i]); ji[i]=JI(uu[i],vv[i],ww[i],i); h.addbian(uu[i],vv[i]); h.addbian(vv[i],uu[i]); } kru(); fa[1]=-1; dfs1(1); dfs2(1,1); build(1,n,1); for(i=1;i<=m;++i) if(isis[i]&&!istree[i]) Modi(uu[i],vv[i],ww[i]); for(i=1;i<=m;++i) { //printf("i=%d %d\n",i,(isis[i]?1:0)); if(isis[i]) { if(istree[i]) { tt=Inf; qqmin(dfn[dep[uu[i]]>dep[vv[i]]?uu[i]:vv[i]],tt,1,n,1); if(tt==Inf) tt=0; --tt; printf("%d ",tt); } else printf("%d ",QQMAX(uu[i],vv[i])-1); } else puts("0"); } }T3
11.4 考試