261. Graph Valid Tree
阿新 • • 發佈:2017-11-23
from edge tro dtree assume pub func sum clas , return
Given n
nodes labeled from 0
to n - 1
and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.
For example:
Given n = 5
and edges = [[0, 1], [0, 2], [0, 3], [1, 4]]
, return true
.
Given n = 5
and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]]
false
.
Note: you can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.
class Solution { public: bool validTree(int n, vector<pair<int, int>>& edges) { vector<int>roots(n,-1); for(auto edge:edges) { int x = findroots(roots,edge.first),y = findroots(roots,edge.second); if(x==y) return false; roots[x] = y; } return edges.size()==n-1; } private: int findroots(vector<int> &roots,intx) { while(roots[x]!=-1) x = roots[x]; return x; } };
261. Graph Valid Tree