1. 程式人生 > >因數的個數 線段樹維護

因數的個數 線段樹維護

fine itl 質因數 max-width calculate 但是 clas blog roc

Let D(x) be the number of positive divisors of a positive integer x. For example, D(2)?=?2 (2 is divisible by 1 and 2), D(6)?=?4 (6 is divisible by 1, 2, 3 and 6).

You are given an array a of n integers. You have to process two types of queries:

  1. REPLACE l r — for every 技術分享圖片 replace ai with D(ai);
  2. SUM l
    r — calculate 技術分享圖片.

Print the answer for each SUM query.

Input

The first line contains two integers n and m (1?≤?n,?m?≤?3·105) — the number of elements in the array and the number of queries to process, respectively.

The second line contains n integers a1, a2, ..., an (1?≤?ai?≤?106) — the elements of the array.

Then m lines follow, each containing 3 integers ti, li, ri denoting i-th query. If ti?=?1, then i-th query is REPLACE li ri, otherwise it‘s SUM li ri (1?≤?ti?≤?2, 1?≤?li?≤?ri?≤?n).

There is at least one SUM query.

Output

For each SUM query print the answer to it.

Example Input
7 6
6 4 1 10 3 2 4
2 1 7
2 4 5
1 3 5
2 4 4
1 5 7
2 1 7
Output
30
13
4
22

題目分析 :題目說了一種操作,就是將一個數變成它的因數的個數,第二種操作是查詢一段區間的和,首先你觀察它的查詢和更改的操作次數有 3e5 次,查詢的話肯定是沒有問題的, logn 的復雜度,但是你更改呢?每個數都改,一定會超時,那麽要看下這些被改的數有什麽特征,一個很大的數,經過一次質因數操作,會變成一個相對很小的數,重復此過程,會變得越來越小,直到變成2,那麽我線段樹可以優化的地方是不就在這裏,設一個標記,就可以了
代碼示例 :
const ll maxn = 1e6+5;
const ll maxn2 = 3e5+5;
const double pi = acos(-1.0);
const ll inf = 0x3f3f3f3f;
#define lson k<<1
#define rson k<<1|1

ll cnt[maxn];

struct node
{
    ll l, r;
    ll sum;
    ll pt;
}t[maxn2<<2];

void init() {
    for(int i = 1; i <= 1000000; i++) cnt[i] = 2;
    cnt[1] = 1;
    for(int i = 2; i <= 1000000; i++){
        for(int j = i+i; j <= 1000000; j += i) cnt[j]++;
    }
}

void pushup(int k){
    t[k].sum = t[lson].sum + t[rson].sum;
    if (t[lson].pt && t[rson].pt) t[k].pt = 1;
}

void build(ll l, ll r, ll k){
    t[k].l = l; t[k].r = r;
    
    t[k].pt = 0;
    if (l == r) {
        scanf("%lld", &t[k].sum);
        if (t[k].sum == cnt[t[k].sum]) t[k].pt = 1;
        return;
    }
    ll m = (l + r) >> 1;
    build(l, m, lson);
    build(m+1, r, rson);
    pushup(k);
}

ll query(ll l, ll r, ll k){
    ll s = 0;
    
    if (l <= t[k].l && t[k].r <= r){
        s += t[k].sum;
        return s;
    }
    ll m = (t[k].l + t[k].r) >> 1;
    if (l <= m) s += query(l, r, lson);
    if (r > m) s += query(l, r, rson);
    return s;
}

void update(ll l, ll r, ll k){
    if (t[k].pt) return;
    if (t[k].l == t[k].r) {
        t[k].sum = cnt[t[k].sum];
        if (t[k].sum == cnt[t[k].sum]) t[k].pt = 1;
        //printf("***** %lld\n", cnt[x]);
        return;
    }
    ll m = (t[k].l + t[k].r) >> 1;
    if (l <= m) update(l, r, lson);
    if (r > m) update(l, r, rson);
    pushup(k);
}

int main() {
    //freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
    ll n, m;
    ll pt, l, r;
    
    init();
    //for(ll i = 1; i <= 100; i++) printf("%lld  %lld\n", i, cnt[i]);
    cin >> n >> m;
    build(1, n, 1);
    //printf("%lld\n", query(1, 7, 1));
    for(ll i = 1; i <= m; i++){
        scanf("%lld%lld%lld", &pt, &l, &r);
        if (pt == 1) {
            update(l, r, 1);
        }
        else {
            printf("%lld\n", query(l, r, 1));
        }    
    }
    return 0;
}

因數的個數 線段樹維護