uoj348【WC2018】州區劃分
阿新 • • 發佈:2018-02-12
標準 枚舉 opc 鏈接 second 復雜 cnblogs pan make ,先在最開始DWT所有的g,枚舉i,j,然後卷一下\(f_{i-j}\)與\(g_j\),只要在dp的過程中一直保持f是已經DWT了的,卷積的復雜度就只有\(O(2^n)\),記得\(f_i\)算完以後要IDWT一下乘上\(vals(s)^{-p}\)再DWT。復雜度\(O(n^22^n)\)
題目鏈接
直接講噸噸噸給的標準做法吧。記\(f(i,j)\)表示各個州(可以重疊)的城市數量之和為i,這些州的並集為j的方案數,反正若有兩個州之間有交集最後的\(|j|\)會不等於\(i\)。有
\(f(i,s)=\sum_{s1} \sum_{s2}[s1|s2==s] \ f(i-|s2|,s1)*can(s2) (\frac{vals(s2)}{vals(s)})^p\)
\(f(i,s)*vals(s)^p=\sum_j \sum_{|s2|=j} \sum_{s1} [s1|s2==s]\ f(i-j,s1)*can(s2) *vals(s2)^p\)
記\(g(|s|,s)\)表示\(can(s)*vals(s)^p\)
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<vector>
#include<algorithm>
#include<cmath>
#define P puts("lala")
#define cp cerr<<"lala"<<endl
#define ln putchar(‘\n‘)
#define pb push_back
#define fi first
#define se second
#define mkp make_pair
using namespace std;
inline int read()
{
char ch=getchar();int g=1,re=0;
while(ch<‘0‘||ch>‘9‘) {if(ch==‘-‘)g=-1;ch=getchar();}
while (ch<=‘9‘&&ch>=‘0‘) re=(re<<1)+(re<<3)+(ch^48),ch=getchar();
return re*g;
}
typedef long long ll;
typedef pair<int,int> pii;
const int N=25;
const int mod=998244353;
inline ll qpow(ll a,int n)
{
ll ans=1;
for(;n;n>>=1,a=a*a%mod) if(n&1) ans=ans*a%mod;
return ans;
}
void FWT(int *a,int n,ll f)
{
for(int step=1;step<n;step<<=1)
for(int j=0;j<n;j+=(step<<1))
for(int k=j;k<j+step;++k)
{
int x=a[k],y=a[k+step];
a[k+step]=(y+f*x+mod)%mod;
}
}
int head[N],cnt=0;
struct node
{
int to,next;
}e[N*N];
inline void add(int x,int y)
{
e[++cnt]=(node){y,head[x]}; head[x]=cnt;
e[++cnt]=(node){x,head[y]}; head[y]=cnt;
}
int val[N],n,m,vals[1<<21|1],deg[N],fa[N];
bool can[1<<21|1];
pii edg[N*N];
inline int find(int x)
{
if(fa[x]!=x) return fa[x]=find(fa[x]);
return fa[x];
}
int f[23][1<<21|1],g[23][1<<21|1];
void wj()
{
#ifndef ONLINE_JUDGE
freopen("walk.in","r",stdin);
freopen("walk.out","w",stdout);
#endif
}
int main()
{
wj();
n=read(); m=read(); int p=read();
for(int i=1;i<=m;++i)
{
int x=read(),y=read();
add(x,y);
edg[i]=pii(x,y);
}
for(int i=1;i<=n;++i) val[i]=read();
int tot=1<<n;
for(int s=0;s<tot;++s)
{
int all=0;
for(int i=1;i<=n;++i) if(s&(1<<i-1)) vals[s]+=val[i],all++;
vals[s]=qpow(vals[s],p);
for(int i=1;i<=n;++i) fa[i]=i,deg[i]=0;
for(int i=1;i<=m;++i) if((s&(1<<edg[i].fi-1))&&(s&(1<<edg[i].se-1)))
{
deg[edg[i].fi]++; deg[edg[i].se]++;
int r1=find(edg[i].fi),r2=find(edg[i].se);
if(r1!=r2) all--;
fa[r1]=r2;
}
can[s]=1;
if(all!=1) continue;
for(int i=1;i<=n;++i) if(s&(1<<i-1))
if(deg[i]&1) {can[s]=1;break;}
else can[s]=0;
}
f[0][0]=1;
for(int s=0;s<tot;++s)
g[__builtin_popcount(s)][s]=can[s]*vals[s],vals[s]=qpow(vals[s],mod-2);
FWT(f[0],tot,1);
for(int i=1;i<=n;++i) FWT(g[i],tot,1);
for(int i=1;i<=n;++i)
{
for(int j=1;j<=i;++j)
{
for(int k=0;k<tot;++k) f[i][k]=(f[i][k]+1ll*f[i-j][k]*g[j][k])%mod;
}
if(!p) continue;
FWT(f[i],tot,-1);
for(int k=0;k<tot;++k) f[i][k]=1ll*f[i][k]*vals[k]%mod;
FWT(f[i],tot,1);
}
FWT(f[n],tot,-1);
printf("%d\n",f[n][tot-1]);
return 0;
}
uoj348【WC2018】州區劃分