RF:RF實現根據乳腺腫瘤特征向量高精度(better)預測腫瘤的是惡性還是良性—Jason niu
阿新 • • 發佈:2018-02-14
body pos tlab 高精度 total index 性能分析 總數 itl
%RF:RF實現根據乳腺腫瘤特征向量高精度(better)預測腫瘤的是惡性還是良性 load data.mat a = randperm(569); Train = data(a(1:500),:); Test = data(a(501:end),:); P_train = Train(:,3:end); T_train = Train(:,2); P_test = Test(:,3:end); T_test = Test(:,2); model = classRF_train(P_train,T_train); [T_sim,votes] = classRF_predict(P_test,model); count_B = length(find(T_train == 1)); count_M = length(find(T_train == 2)); total_B = length(find(data(:,2) == 1)); total_M = length(find(data(:,2) == 2)); number_B = length(find(T_test == 1)); number_M = length(find(T_test == 2)); number_B_sim = length(find(T_sim == 1 & T_test == 1)); number_M_sim = length(find(T_sim == 2 & T_test == 2)); disp([‘病例總數:‘ num2str(569)... ‘ 良性:‘ num2str(total_B)... ‘ 惡性:‘ num2str(total_M)]); disp([‘訓練集病例總數:‘ num2str(500)... ‘ 良性:‘ num2str(count_B)... ‘ 惡性:‘ num2str(count_M)]); disp([‘測試集病例總數:‘ num2str(69)... ‘ 良性:‘ num2str(number_B)... ‘ 惡性:‘ num2str(number_M)]); disp([‘良性乳腺腫瘤確診:‘ num2str(number_B_sim)... ‘ 誤診:‘ num2str(number_B - number_B_sim)... ‘ 確診率p1=‘ num2str(number_B_sim/number_B*100) ‘%‘]); disp([‘惡性乳腺腫瘤確診:‘ num2str(number_M_sim)... ‘ 誤診:‘ num2str(number_M - number_M_sim)... ‘ 確診率p2=‘ num2str(number_M_sim/number_M*100) ‘%‘]); figure index = find(T_sim ~= T_test); plot(votes(index,1),votes(index,2),‘r*‘) hold on index = find(T_sim == T_test); plot(votes(index,1),votes(index,2),‘bo‘) hold on legend(‘紅色*是錯誤分類樣本‘,‘藍色空心圓是正確分類樣本‘) plot(0:500,500:-1:0,‘r-.‘) hold on plot(0:500,0:500,‘r-.‘) hold on line([100 400 400 100 100],[100 100 400 400 100]) xlabel(‘輸出為類別1的決策樹棵數‘) ylabel(‘輸出為類別2的決策樹棵數‘) title(‘隨機森林分類器性能分析—Jason niu‘) Accuracy = zeros(1,20); for i = 50:50:1000 i accuracy = zeros(1,100); for k = 1:100 model = classRF_train(P_train,T_train,i); T_sim = classRF_predict(P_test,model); accuracy(k) = length(find(T_sim == T_test)) / length(T_test); end Accuracy(i/50) = mean(accuracy); end figure plot(50:50:1000,Accuracy) xlabel(‘隨機森林中決策樹棵數‘) ylabel(‘分類正確率‘) title(‘隨機森林中決策樹棵數對性能的影響—Jason niu‘)
RF:RF實現根據乳腺腫瘤特征向量高精度(better)預測腫瘤的是惡性還是良性—Jason niu