HDU 3480 Division
阿新 • • 發佈:2018-02-20
所有 tput sam mda minimal sin ica inline http
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that
and the total cost of each subset is minimal.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.
Source
2010
ACM-ICPC Multi-University Training Contest(5)——Host by BJTU
Division
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 999999/400000 K (Java/Others)
Total Submission(s): 5344 Accepted Submission(s):
2115
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that
and the total cost of each subset is minimal.
Input The input contains multiple test cases.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.
Output For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.
Sample Input 2 3 2 1 2 4 4 2 4 7 10 1
Sample Output Case 1: 1 Case 2: 18 Hint The answer will fit into a 32-bit signed integer.
Recommend zhengfeng | We have carefully selected several similar problems for you: 3478 3485 3487 3486 3484 四邊形不等式好惡心。。 首先對所有的數據排序(根據方差的性質貪心) 我們用$dp[i][j]$表示前$j$個數,分為$i$段的最小代價 樸素的轉移的話枚舉前一段的斷點 然後根據……&*()¥#%……&我們可以知道這玩意兒滿足四邊形不等式 然後愉快的套上板子就好啦
#include<cstdio> #include<cstring> #include<algorithm> const int MAXN=10001,INF=1e9+10; using namespace std; inline int read() { char c=getchar();int x=0,f=1; while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1;c=getchar();} while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘;c=getchar();} return x*f; } int dp[MAXN][MAXN],s[MAXN][MAXN],a[MAXN]; int mul(int x){return x*x;} int main() { int Test=read(),cnt=0; while(Test--) { int N=read(),M=read(); for(int i=1;i<=N;i++) a[i]=read();sort(a+1,a+N+1); for(int i=1;i<=N;i++) dp[1][i]=mul(a[i]-a[1]),s[1][i]=1; for(int i=2;i<=M;i++) { s[i][N+1]=N-1;//邊界 for(int j=N;j>=i;j--) { int mn=INF,mnpos=-1; for(int k=s[i-1][j];k<=s[i][j+1];k++) { if(dp[i-1][k]+mul(a[j]-a[k+1])<mn) { mn=dp[i-1][k]+mul(a[j]-a[k+1]); mnpos=k; } } dp[i][j]=mn; s[i][j]=mnpos; } } printf("Case %d: %d\n",++cnt,dp[M][N]); } return 0; }
HDU 3480 Division