1. 程式人生 > >[NOIP2017] 逛公園

[NOIP2017] 逛公園

給定 namespace 等於 urn space int tchar 記憶 記憶化

[NOIP2017] 逛公園

題目大意:

給定一張圖,詢問長度 不超過1到n的最短路長度加k 的1到n的路徑 有多少條。
數據範圍: 點數\(n \le 10^5\) ,邊數\(m \le 2*10^5\)

題目解法

兩個月後再看也不是太難,自己就能獨立思考出來。
首先是判-1的問題,顯然能產生-1的只有0環。
所以把0環都找出來,
然後檢查一下\(dis[\)\(1\),環\(]\) + \(dis[\)環,\(n]\) 是否小於等於 \(dis[1,n]+K\)即可。
如果不是無限路徑的話,也比較套路了。直接把距離扔到\(DP\)維數中肯定不現實。
所以設\(f[ u ][ d ]\)表示從1到u,長度為\(dis[1,u]\)

+\(d\) 的路徑有多少條。
我們假設\(u\) --> \(v\)\(d_u = rest'\) , \(d_v = rest\) , 那麽有如下關系:
\[rest' + dis[1 , u ] + t[ i ].lg\ \ =\ \ rest + dis[1 , v]\]
轉移:\(f[v][rest] = \sum f[ u ][rest']\) , 初值\(f[1][0] = 1\)
細節比較多 , 求 \(0\)環 判 -1 可以用\(Tarjan\)做,只走邊權為0的邊即可。
然後\(DP\)的時候轉移順序不好處理 , 所以記憶化搜索即可。

實現代碼:

註:記憶化搜索倒著搜比較方便就倒著搜了。

#include<bits/stdc++.h>
#define RG register
#define IL inline
#define os 55
#define _ 200005
#define INF 1000000007
using namespace std;

IL int gi(){
    RG int data = 0 , m = 1; RG char ch = 0;
    while(ch != '-' && (ch < '0' || ch > '9') ) ch = getchar();
    if( ch == '-' ) { ch = getchar(); m = 0; }
    while(ch >= '0' && ch <= '9'){data = (data << 1) + (data << 3) + (ch ^ 48); ch = getchar();}
    return ( m ) ? data : -data;
} 

int Case,N,M,K,P,zero_res,oo,top,cnt,ans,init[_];
int dis[_][2],dp[_][os],dfn[_],low[_],stk[_],tmp[_],hd[_];
struct Road{int to , next , w ; }t[2*_][ 2 ] ; int head[ _ ][ 2 ];
bool vis[_]; queue<int>Q;

IL void spfa(RG int S , RG int id){
    for(RG int i = 1; i <= N; i ++)dis[ i ][id] = INF ;
    vis[ S ] = true; Q.push( S ) ; dis[ S ][id] = 0;
    while(!Q.empty()){
        RG int u = Q.front(); Q.pop();
        for(RG int i = head[ u ][id] ; i ; i = t[ i ][id].next){
            RG int v = t[ i ][id].to ;
            if(dis[ v ][id] > dis[ u ][id] + t[ i ][id].w){
                dis[ v ][id] = dis[ u ][id] + t[ i ][id].w ;
                if(! vis[ v ] ) Q.push( v ) , vis[ v ] = true;
            }
        }vis[ u ] = false;
    }return;
}

IL void Tarjan( RG int u ){
    stk[ ++ top ] = u;
    dfn[ u ] = low[ u ] = ++ oo ; init[ u ] = true;
    for(RG int i = head[ u ][0] ; i ; i = t[ i ][0].next){
        if(t[ i ][0].w != 0)continue; RG int v = t[ i ][0].to;
        if( !dfn[ v ] )
            Tarjan( v ) , low[ u ] = min(low[ u ] , low[ v ]) ;
        else if(init[ v ])low[ u ] = min(low[ u ] , dfn[ v ]) ;
    }
    if(low[ u ] == dfn[ u ]){
        RG int e , ct = 0;
        while(1){
            e = stk[ top ] ; top --;
            init[e] = false; tmp[ ++ct ] = e;
            if(e == u || !top) break;
        }
        if(ct >= 2)
            zero_res = min( dis[ u ][ 0 ] + dis[ u ][ 1 ] , zero_res) ;     
    }return;
}

IL int DP( RG int u , RG int rest ) {
    if( dp[ u ][ rest ] )return dp[ u ][ rest ] ;
    for(RG int i = head[ u ][ 1 ] ; i ; i = t[ i ][ 1 ].next){
        RG int v = t[ i ][ 1 ].to , d;
        d = rest + dis[ u ][ 0 ] - dis[ v ][ 0 ] - t[ i ][ 1 ].w ;
        if( d < 0 )continue;
        dp[ u ][ rest ] = ( dp[ u ][ rest ] + DP( v , d ) ) % P;  
    }return dp[ u ][ rest ] ; 
}
//v-->u : rest' + dis[v][0] + t[i].w = rest + dis[u][0]

int main(){
    freopen("2017park.in" , "r" , stdin);
    freopen("2017park.out" , "w" , stdout);
    Case = gi();
    while(Case -- ){
        
        N = gi(); M = gi(); K = gi(); P = gi();
        for(RG int i = 1; i <= N; i ++)head[ i ][ 0 ] = 0;
        for(RG int i = 1; i <= N; i ++)head[ i ][ 1 ] = 0;
        for(RG int i = 1; i <= N; i ++)dfn[ i ] = low[ i ] = 0;
        
        cnt = 0;
        for(RG int i = 1 , u , v , c; i <= M; i ++){
            u = gi(); v = gi(); c = gi(); ++ cnt ;
            t[ cnt ][ 0 ] = ( Road ) { v , head[ u ][ 0 ] , c } ;
            head[ u ][ 0 ] = cnt ;
            t[ cnt ][ 1 ] = ( Road ) { u , head[ v ][ 1 ] , c } ;
            head[ v ][ 1 ] = cnt ;
            //0 : u --> v (oder)  // 1 : v --> u (dder)
        }
    
        spfa(1 , 0) ; spfa(N , 1) ;
        zero_res = INF ; 
        for(RG int i = 1; i <= N ; i ++) if( ! dfn[ i ] ) Tarjan( i ) ;

        if(zero_res <= dis[ N ][ 0 ] + K){ puts("-1") ; continue; } 
        for(RG int i = 1; i <= N; i ++)
            for(RG int j = 0; j <= K; j ++)
                dp[ i ][ j ] = 0; 
        dp[ 1 ][ 0 ] = 1;  ans = 0;
        for(RG int delta = 0; delta <= K; delta ++)
            ans = ( ans + DP( N , delta ) ) % P;        
        cout << ans << endl;
        
    }return 0;
}

[NOIP2017] 逛公園