1. 程式人生 > >ural 1707. Hypnotoad's Secret(線段樹)

ural 1707. Hypnotoad's Secret(線段樹)

per modify cst any div ini ref sdn sta

題目鏈接:ural 1707. Hypnotoad‘s Secret

題目大意:給定N和M,然後N組s0, t0, Δs, Δt, k,每組能夠計算出k個星星的坐標;M組a0, b0, c0, d0, Δa, Δb, Δc,?

Δd, q。每組要求算出q個矩形,推斷矩形內是否包括星星,對於q≥20的情況要依據公式計算一個值就可以。

解題思路:計算出全部的星星坐標和矩陣,這個每的說了,將矩陣差分成兩點。通過計算出每一個點左下角有多少個星

星,然後用容斥計算出矩陣內是否有點。這個屬於線段樹的一個應用。

#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <algorithm>

using namespace std;
typedef long long ll;

const ll mod = 200904040963LL;
const int maxn = 300000;

#define lson(x) ((x)<<1)
#define rson(x) (((x)<<1)|1)
int lc[maxn << 2
], rc[maxn << 2], s[maxn << 2]; inline void pushup(int u) { s[u] = s[lson(u)] + s[rson(u)]; } void build (int u, int l, int r) { lc[u] = l; rc[u] = r; s[u] = 0; if (l == r) return; int mid = (l + r) / 2; build(lson(u), l, mid); build(rson(u), mid + 1
, r); pushup(u); } void modify(int u, int x) { if (lc[u] == x && x == rc[u]) { s[u] += 1; return; } int mid = (lc[u] + rc[u]) / 2; if (x <= mid) modify(lson(u), x); else modify(rson(u), x); pushup(u); } int query(int u, int l, int r) { if (l <= lc[u] && rc[u] <= r) return s[u]; int mid = (lc[u] + rc[u]) / 2, ret = 0; if (l <= mid) ret += query(lson(u), l, r); if (r > mid) ret += query(rson(u), l, r); return ret; } struct point { int t, x, y; point (int x = 0, int y = 0, int t = 0) { set(x, y); this->t = t; } void set (int x, int y) { this->x = x; this->y = y; } friend bool operator < (const point& a, const point& b) { if (a.x != b.x) return a.x < b.x; if (a.y != b.y) return a.y < b.y; return a.t < b.t; } }; struct state { point a, b; state (point a, point b) { this->a = a; this->b = b; } }; int N, M, P; ll T[350]; vector<int> pos, tmp, cnt; vector<point> vec; vector<state> que; map<point, int> G; inline void add_point (ll x, ll y, int k) { vec.push_back(point(x, y, k)); tmp.push_back(y); } inline void add_state (int a, int b, int c, int d) { add_point(a - 1, b - 1, 1); add_point(c, d, 1); int u = vec.size(); que.push_back(state(vec[u-2], vec[u-1])); add_point(a - 1, d, 1); add_point(c, b - 1, 1); } inline int find (int a) { return lower_bound(pos.begin(), pos.end(), a) - pos.begin(); } void init () { G.clear(); cnt.clear(); vec.clear(); que.clear(); pos.clear(); tmp.clear(); int a, b, c, d, aa, bb, cc, dd, k; for (int i = 0; i < M; i++) { scanf("%d%d%d%d%d", &a, &b, &aa, &bb, &k); a = (a + N) % N; b = (b + N) % N; for (int j = 0; j < k; j++) { add_point(a, b, 0); a = (a + aa + N) % N; b = (b + bb + N) % N; } } scanf("%d", &P); for (int i = 0; i < P; i++) { scanf("%d%d%d%d", &a, &b, &c, &d); scanf("%d%d%d%d%d", &aa, &bb, &cc, &dd, &k); a = (a + N) % N; b = (b + N) % N; c = (c + N) % N; d = (d + N) % N; cnt.push_back(k); for (int j = 0; j < k; j++) { add_state(min(a, b), min(c, d), max(a, b), max(c, d)); a = (a + aa + N) % N; b = (b + bb + N) % N; c = (c + cc + N) % N; d = (d + dd + N) % N; } } sort(vec.begin(), vec.end()); sort(tmp.begin(), tmp.end()); pos.push_back(tmp[0]); for (int i = 1; i < tmp.size(); i++) { if (tmp[i] != tmp[i-1]) pos.push_back(tmp[i]); } build(1, 0, pos.size()); } inline int judge (state u) { return G[u.b] + G[u.a] - G[point(u.b.x, u.a.y, 1)] - G[point(u.a.x, u.b.y, 1)]; } void solve () { for (int i = 0; i < vec.size(); i++) { if (vec[i].t) G[vec[i]] = query(1, 0, find(vec[i].y)); else modify(1, find(vec[i].y)); } int mv = 0; for (int i = 0; i < cnt.size(); i++) { if (cnt[i] > 20) { ll ret = 0; for (int j = 0; j < cnt[i]; j++) ret = (ret + (judge(que[mv + j]) > 0 ?

1 : 0) * T[j]) % mod; printf("%lld", ret); } else { for (int j = 0; j < cnt[i]; j++) printf("%d", judge(que[mv + j]) > 0 ?

1 : 0); } mv += cnt[i]; printf("\n"); } } int main () { T[0] = 1; for (int i = 1; i <= 345; i++) T[i] = T[i-1] * 7 % mod; while (scanf("%d%d", &N, &M) == 2) { init(); solve(); } return 0; }

ural 1707. Hypnotoad's Secret(線段樹)