[COGS 2401]Time is Money
Description
題庫鏈接
給你 \(n\) 個節點 \(m\) 條邊的無向連通圖。每條邊有兩個權值 \(c,t\) ,要你生成一棵邊集為 \(\mathbb{E}\) 的生成樹使得 \[\sum_{e\in \mathbb{E}}e_c \times \sum_{e\in \mathbb{E}}e_t\] 最小。
\(1\leq n\leq 200,1\leq m\leq 10000\)
Solution
令 \(x=\sum_{e\in \mathbb{E}}e_c,y=\sum_{e\in \mathbb{E}}e_t\) 。記 \(k=xy\) ,那麽對於反比例函數 \(y=\frac{k}{x}\)
我們將所有生成樹的權值以 \((x,y)\) 的形式刻畫在坐標軸上,顯然滿足條件的最小值一定在左下凸包上。
那麽首先最極端的是單純按 \(c\) 排序和按 \(t\) 排序得到的點 \(A,B\) 。
然後顯然要找到在連線 \(AB\) 左下最遠的點 \(C\) 。
由於離 \(AB\) 最遠的 \(C\) 必定導致 \(S_{\Delta ABC}\) 最大。
顯然就是求 \(\left(\vec{AB}\times\vec{AC}\right)_{min}\) \[\begin{aligned}\vec{AB}\times\vec{AC}&=(x_B-x_A)(y_C-y_A)-(y_B-y_A)(x_C-x_A)\\&=y_C(x_B-x_A)+x_C(y_A-y_B)+K\end{aligned}\]
其中 \(K\) 是與 \(C\) 無關的量,可以忽略。所以將所有邊權改為上述式子後做一遍最小生成樹就可以求出 \(C\) 了。
然後繼續分治對線段 \(AC\) 和線段 \(CB\) 求解即可。遞歸的邊界為 \(\vec{AB}\times\vec{AC}\geq 0\) 。
Code
//It is made by Awson on 2018.3.7
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 200, M = 10000;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); }
int n, m, fa[N+5];
struct tt {
int u, v, w, c, t;
bool operator < (const tt &b) const {return w < b.w; }
}edge[M+5];
struct node {
int x, y;
node(int _x = 0, int _y = 0) {x = _x, y = _y; }
int operator * (const node &b) const {return x*b.y-y*b.x; }
node operator + (const node &b) {node t; t.x = x+b.x, t.y = y+b.y; return t; }
node operator - (const node &b) {node t; t.x = x-b.x, t.y = y-b.y; return t; }
void print() {write(x), putchar(' '), writeln(y); }
}ans, A, B;
int find(int x) {return fa[x] ? fa[x] = find(fa[x]) : x; }
void update(node &ans, node x) {if (1ll*ans.x*ans.y > 1ll*x.x*x.y || (1ll*ans.x*ans.y == 1ll*x.x*x.y && ans.x > x.x)) ans = x; }
bool judge(node A, node B, node C) {return (B-A)*(C-A) >= 0; }
node kruskal() {
memset(fa, 0, sizeof(fa)); int cnt = 0; node tmp;
sort(edge+1, edge+1+m);
for (int i = 1; i <= m; i++) {
if (find(edge[i].u)^find(edge[i].v)) {
++cnt; fa[find(edge[i].u)] = find(edge[i].v);
tmp = tmp+node(edge[i].c, edge[i].t);
if (cnt == n-1) break;
}
}
return tmp;
}
void doit(node A, node B) {
int x = B.x-A.x, y = A.y-B.y; node C;
for (int i = 1; i <= m; i++) edge[i].w = x*edge[i].t+y*edge[i].c;
update(ans, C = kruskal());
if (judge(A, B, C)) return;
doit(A, C), doit(C, B);
}
void work() {
read(n), read(m);
for (int i = 1; i <= m; i++) read(edge[i].u), read(edge[i].v), read(edge[i].c), read(edge[i].t), ++edge[i].u, ++edge[i].v;
for (int i = 1; i <= m; i++) edge[i].w = edge[i].c;
A = ans = kruskal();
for (int i = 1; i <= m; i++) edge[i].w = edge[i].t;
update(ans, B = kruskal());
doit(A, B);
ans.print();
}
int main() {
work(); return 0;
}
[COGS 2401]Time is Money