fasttext模型 訓練THUCNews
阿新 • • 發佈:2018-04-13
cati mes join color for 問題 clas red cal
# _*_coding:utf-8 _*_ import fasttext import jieba from sklearn import metrics import random def read_file(filename): i=0; sentences =[] out = open(‘data/cnews/fast_test.txt‘,‘a+‘) with open(filename) as ft: for line in ft: label, content = line.strip().split(‘\t‘) segs= jieba.cut(content) segs = filter(lambda x:len(x)>1,segs) sentences.append("__label__"+str(label)+"\t"+" ".join(segs)) random.shuffle(sentences) for sentence in sentences: out.write(sentence+"\n") out.close() read_file(‘data/cnews/cnews.train.txt‘) classifier = fasttext.supervised(‘data/cnews/fast_train.txt‘,‘new_fasttext.model‘) classifier = fasttext.load_model(‘new_fasttext.model.bin‘) categories = [‘體育‘, ‘財經‘,‘房產‘,‘家居‘,‘教育‘, ‘科技‘, ‘時尚‘, ‘時政‘, ‘遊戲‘, ‘娛樂‘] read_file(‘data/cnews/cnews.test.txt‘) result = classifier.test(‘data/cnews/fast_test.txt‘) print("準確率為:%f"%result.precision) print("召回率為: %f"%result.recall) with open(‘data/cnews/cnews.test.txt‘) as fw: contents,labels = [],[] for line in fw: label ,content = line.strip().split(‘\t‘) segs = jieba.cut(content) segs = filter(lambda x:len(x)>1,segs) contents.append(" ".join(segs)) labels.append(‘__label__‘+label) label_predict = [e[0] for e in classifier.predict(contents)] print("Precision,Recall and F1-Score....") print(metrics.classification_report(labels,label_predict,target_names=categories))
關於fasttext的使用一些疑問:fasttext.supervised的參數label_prefix 一直提示我這個參數使用有問題... 然而,搜素了半天,我也沒搞明白這個參數哪裏有問題
還有一點需要註意的地方:fasttext的識別標簽統一需要在標簽前面加上"__label__"
後續會更新fastext的原理
fasttext模型 訓練THUCNews