[CQOI 2018]解鎖屏幕
阿新 • • 發佈:2018-05-04
AI print \n 預處理 spa mat esp != urn
Description
題庫鏈接
給出平面上 \(n\) 個點,一開始你可以選任何一個點作為起點,接著對於每一個你在的位置,你可以選取一個未走過的點。將路徑(線段)上所有的點均選上(包括起點終點),並走到選擇的那個點上。詢問選的點的個數 \(\geq 4\) 的方案數。區別不同的方案,只需要路徑不一樣即可。
\(1\leq n\leq 20\)
Solution
狀壓 \(dp\) 。
先預處理出兩點間路徑上會經過的點。 \(dp\) 的時候需要選擇路徑上不會經過未選擇點的方案走。
復雜度 \(O(n^3+2^nn^2)\) 。
Code
#include <bits/stdc++.h>
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 20+5, SIZE = (1<<20)+5, yzh = 100000007;
struct point {
int x, y;
point (int _x = 0, int _y = 0) {x = _x, y = _y; }
point operator - (const point &b) const {return point(x-b.x, y-b.y); }
int operator * (const point &b) const {return x*b.y-y*b.x; }
}a[N];
int n, mp[N][N], bin[N], f[SIZE][N], cnt[SIZE], ans;
void check(int x, int y) {
int mxx = max(a[x].x, a[y].x), mnx = min(a[x].x, a[y].x);
int mxy = max(a[x].y, a[y].y), mny = min(a[x].y, a[y].y);
for (int i = 1; i <= n; i++)
if (i != x && i != y)
if ((a[y]-a[x])*(a[i]-a[x]) == 0)
if (a[i].x >= mnx && a[i].x <= mxx && a[i].y >= mny && a[i].y <= mxy)
mp[x][y] |= bin[i-1];
}
void work() {
scanf("%d", &n);
bin[0] = 1; for (int i = 1; i <= n; i++) bin[i] = bin[i-1]<<1;
for (int i = 1; i <= bin[n]; i++) cnt[i] = cnt[i-lowbit(i)]+1;
for (int i = 1; i <= n; i++) scanf("%d%d", &a[i].x, &a[i].y);
for (int i = 1; i <= n; i++) for (int j = i+1; j <= n; j++) check(i, j);
f[0][0] = 1;
for (int i = 0; i < bin[n]; i++)
for (int j = 0; j <= n; j++) if (f[i][j])
for (int k = 1; k <= n; k++) if (!(bin[k-1]&i)) {
int x = j, y = k; if (x > y) swap(x, y);
if ((i&mp[x][y]) == mp[x][y]) (f[i|bin[k-1]][k] += f[i][j]) %= yzh;
}
for (int i = 0; i < bin[n]; i++) if (cnt[i] >= 4)
for (int j = 1; j <= n; j++) (ans += f[i][j]) %= yzh;
printf("%d\n", ans);
}
int main() {work(); return 0; }
[CQOI 2018]解鎖屏幕