生成器python
一、列表生成式
需求:看列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],我要求你把列表裏的每個值加1,你怎麽實現?你可能會想到2種方式
>>> a [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> b = [] >>> for i in a:b.append(i+1) ... >>> b [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> a = b >>> a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
a = [1,3,4,6,7,7,8,9,11] for index,i in enumerate(a): a[index] +=1 print(a) 原值修改
>>> a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> a = map(lambda x:x+1, a) >>> a <map object at 0x101d2c630> >>> for i in a:print(i) ... 3 5 7 9 11 文藝青年版
>>> a = [i+1 for i in range(10)] >>> a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
二、生成器
通過列表生成式,我們可以直接創建一個列表。但是,受到內存限制,列表容量肯定是有限的。而且,創建一個包含100萬個元素的列表,不僅占用很大的存儲空間,如果我們僅僅需要訪問前面幾個元素,那後面絕大多數元素占用的空間都白白浪費了。
所以,如果列表元素可以按照某種算法推算出來,那我們是否可以在循環的過程中不斷推算出後續的元素呢?這樣就不必創建完整的list,從而節省大量的空間。在Python中,這種一邊循環一邊計算的機制,稱為生成器:generator。
要創建一個generator,有很多種方法。第一種方法很簡單,只要把一個列表生成式的[]
改成()
,就創建了一個generator:
>>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x1022ef630>
創建L
和g
的區別僅在於最外層的[]
和()
,L
是一個list,而g
是一個generator。
我們可以直接打印出list的每一個元素,但我們怎麽打印出generator的每一個元素呢?
如果要一個一個打印出來,可以通過next()
函數獲得generator的下一個返回值:
>>> next(g) 0 >>> next(g) 1 >>> next(g) 4 >>> next(g) 9
我們講過,generator保存的是算法,每次調用next(g)
,就計算出g
的下一個元素的值,直到計算到最後一個元素,沒有更多的元素時,拋出StopIteration
的錯誤。
當然,上面這種不斷調用next(g)
實在是太變態了,正確的方法是使用for
循環,因為generator也是可叠代對象:
>>> g = (x * x for x in range(10)) >>> for n in g: ... print(n) ... 0 1 4 9 16 25 36 49 64 81
所以,我們創建了一個generator後,基本上永遠不會調用next()
,而是通過for
循環來叠代它,並且不需要關心StopIteration
的錯誤。
generator非常強大。如果推算的算法比較復雜,用類似列表生成式的for
循環無法實現的時候,還可以用函數來實現。
比如,著名的斐波拉契數列(Fibonacci),除第一個和第二個數外,任意一個數都可由前兩個數相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契數列用列表生成式寫不出來,但是,用函數把它打印出來卻很容易:
def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return ‘done‘
註意,賦值語句: 1 a, b = b, a + b 相當於: 1 2 3 t = (b, a + b) # t是一個tuple a = t[0] b = t[1]
但不必顯式寫出臨時變量t就可以賦值。
上面的函數可以輸出斐波那契數列的前N個數:
>>> fib(10) 1 1 2 3 5 8 13 21 34 55 done
仔細觀察,可以看出,fib
函數實際上是定義了斐波拉契數列的推算規則,可以從第一個元素開始,推算出後續任意的元素,這種邏輯其實非常類似generator。
也就是說,上面的函數和generator僅一步之遙。要把fib
函數變成generator,只需要把print(b)
改為yield b
就可以了:
def fib(max): n,a,b = 0,0,1 while n < max: #print(b) yield b a,b = b,a+b n += 1 return ‘done‘
這就是定義generator的另一種方法。如果一個函數定義中包含yield
關鍵字,那麽這個函數就不再是一個普通函數,而是一個generator:
>>> f = fib(6) >>> f <generator object fib at 0x104feaaa0>
這裏,最難理解的就是generator和函數的執行流程不一樣。函數是順序執行,遇到return
語句或者最後一行函數語句就返回。而變成generator的函數,在每次調用next()
的時候執行,遇到yield
語句返回,再次執行時從上次返回的yield
語句處繼續執行。
data = fib(10) print(data) print(data.__next__()) print(data.__next__()) print("幹點別的事") print(data.__next__()) print(data.__next__()) print(data.__next__()) print(data.__next__()) print(data.__next__()) #輸出 <generator object fib at 0x101be02b0> 1 幹點別的事 3 8
在上面fib
的例子,我們在循環過程中不斷調用yield
,就會不斷中斷。當然要給循環設置一個條件來退出循環,不然就會產生一個無限數列出來。
同樣的,把函數改成generator後,我們基本上從來不會用next()
來獲取下一個返回值,而是直接使用for
循環來叠代:
>>> for n in fib(6): ... print(n) ... 1 3 8
但是用for
循環調用generator時,發現拿不到generator的return
語句的返回值。如果想要拿到返回值,必須捕獲StopIteration
錯誤,返回值包含在StopIteration
的value
中:
>>> g = fib(6) >>> while True: ... try: ... x = next(g) ... print(‘g:‘, x) ... except StopIteration as e: ... print(‘Generator return value:‘, e.value) ... break ... g: 1 g: 1 g: 2 g: 3 g: 5 g: 8 Generator return value: done
關於如何捕獲錯誤,後面的錯誤處理還會詳細講解。
還可通過yield實現在單線程的情況下實現並發運算的效果
#_*_coding:utf-8_*_ __author__ = ‘Alex Li‘ import time def consumer(name): print("%s 準備吃包子啦!" %name) while True: baozi = yield print("包子[%s]來了,被[%s]吃了!" %(baozi,name)) def producer(name): c = consumer(‘A‘) c2 = consumer(‘B‘) c.__next__() c2.__next__() print("老子開始準備做包子啦!") for i in range(10): time.sleep(1) print("做了2個包子!") c.send(i) c2.send(i) producer("alex") 通過生成器實現協程並行運算
生成器python