java之HashMap的演進
1. 摘要
HashMap是Java程序員使用頻率最高的用於映射(鍵值對)處理的數據類型。JDK1.8對HashMap底層的實現進行了優化,例如引入紅黑樹的數據結構和擴容的優化等(8的ConcurrentHashMap也引入的紅黑樹)。 本文結合JDK1.7和JDK1.8的區別,深入探討HashMap的結構實現和功能原理。
2. 簡介
Java為數據結構中的映射定義了一個接口java.util.Map,此接口主要有四個常用的實現類,分別是HashMap、Hashtable、LinkedHashMap和TreeMap,類繼承關系如下圖所示:
下面針對各個實現類的特點做一些說明:
(1) HashMap:它根據鍵的hashCode值存儲數據,因而具有很快的訪問速度,但遍歷順序卻是不確定的。 HashMap最多只允許一條記錄的鍵為null,允許多條記錄的值為null。
(2) Hashtable:Hashtable是遺留類,很多映射的常用功能與HashMap類似,不同的是它承自Dictionary類,並且是線程安全的,任一時間只有一個線程能寫Hashtable。
(3) LinkedHashMap:LinkedHashMap是HashMap的一個子類,保存了記錄的插入順序,也可以在構造時帶參數,按照訪問次序排序。
(4) TreeMap:TreeMap實現SortedMap接口,能夠把它保存的記錄根據鍵排序,默認是按鍵值的升序排序,也可以指定排序的比較器,當用Iterator遍歷TreeMap時,得到的記錄是排過序的。 在使用TreeMap時,key必須實現Comparable接口或者在構造TreeMap傳入自定義的Comparator,
對於上述四種Map類型的類,要求映射中的key是不可變對象。不可變對象是該對象在創建後它的哈希值不會被改變(否則內存泄漏)。 如果對象的哈希值發生變化,Map對象很可能就定位不到映射的位置了。
通過上面的比較,我們知道了HashMap是Java的Map家族中一個普通成員,鑒於它可以滿足大多數場景的使用條件,所以是使用頻度最高的一個。下文我們主要結合源碼,從存儲結構、常用方法分析、擴容以及安全性等方面深入講解HashMap的工作原理。
3. 內部實現
搞清楚HashMap,首先需要知道HashMap是什麽,即它的存儲結構-字段;其次弄明白它能幹什麽,即它的功能實現-方法。下面我們針對這兩個方面詳細展開講解。
3.1 存儲結構-字段
從結構實現來講,HashMap是數組+鏈表+紅黑樹(JDK1.8增加了紅黑樹部分)實現的,如下如所示。
這裏需要講明白兩個問題:數據底層具體存儲的是什麽?這樣的存儲方式有什麽優點呢?
3.1.1 Node[]
從源碼可知,HashMap類中有一個非常重要的字段,就是 Node[] table,即哈希桶數組,明顯它是一個Node的數組。我們來看Node[JDK1.8]是何物。跟JDK8的ConcurrentHashMap很像區別在於value和next沒有volatile修飾,key、hash都是final。
static class Node<K,V> implements Map.Entry<K,V> {
final int hash; //用來定位數組索引位置
final K key;
V value;
Node<K,V> next; //鏈表的下一個node
Node(int hash, K key, V value, Node<K,V> next) { ... }
public final K getKey(){ ... }
public final V getValue() { ... }
public final String toString() { ... }
public final int hashCode() { ... }
public final V setValue(V newValue) { ... }
public final boolean equals(Object o) { ... }
}
Node是HashMap的一個內部類,實現了Map.Entry接口,本質是就是一個映射(鍵值對)。上圖中的每個黑色圓點就是一個Node對象。
3.1.2 HashMap就是使用哈希表來存儲的。
哈希表為解決沖突,可以采用開放地址法和鏈地址法等來解決問題,Java中HashMap采用了鏈地址法。鏈地址法,簡單來說,就是數組加鏈表的結合。在每個數組元素上都一個鏈表結構,當數據被Hash後,得到數組下標,把數據放在對應下標元素的鏈表上。例如程序執行下面代碼:
map.put("孫悟空","美猴王");
系統將調用"孫悟空"這個key的hashCode()方法得到其hashCode 值(該方法適用於每個Java對象),然後再通過Hash算法的後兩步運算(高位運算和取模運算,下文有介紹)來定位該鍵值對的存儲位置,有時兩個key會定位到相同的位置,表示發生了Hash碰撞。
如果哈希桶數組很大,即使較差的Hash算法也會比較分散,如果哈希桶數組數組很小,即使好的Hash算法也會出現較多碰撞,所以就需要在空間成本和時間成本之間權衡, 那麽通過什麽方式來控制map使得Hash碰撞的概率又小,哈希桶數組(Node[] table)占用空間又少呢?答案就是好的Hash算法和擴容機制。因為不管多大都有占滿的時候,不管多小都有只存儲少量數據的時候
在理解Hash和擴容流程之前,我們得先了解下HashMap的幾個字段。從HashMap的默認構造函數源碼可知,構造函數就是對下面幾個字段進行初始化,源碼如下:
int threshold; // 所能容納的key-value對極限
final float loadFactor; // 負載因子
int modCount;
int size;
首先,Node[] table的初始化長度length(默認值是16),Load factor為負載因子(默認值是0.75),threshold是HashMap所能容納的最大數據量的Node(鍵值對)個數。threshold = length * Load factor。
結合負載因子的定義公式可知,threshold就是在此Load factor和length(數組長度)對應下允許的最大元素數目,超過這個數目(threshold)就重新resize(擴容), 擴容後的HashMap容量是之前容量的兩倍。
size這個字段其實很好理解,就是HashMap中實際存在的鍵值對數量。註意和table的長度length、容納最大鍵值對數量threshold的區別。 而modCount字段主要用來記錄HashMap內部結構發生變化的次數,主要用於叠代的快速失敗。強調一點,內部結構發生變化指的是結構發生變化,例如put新鍵值對,但是某個key對應的value值被覆蓋不屬於結構變化。
在HashMap中,哈希桶數組table的長度length大小必須為2的n次方(一定是合數),這是一種非常規的設計,常規的設計是把桶的大小設計為素數。HashMap采用這種非常規設計,主要是為了在取模和擴容時做優化,同時為了減少沖突,HashMap定位哈希桶索引位置時,也加入了高位參與運算的過程(非合數設計缺陷的補償)。
這裏存在一個問題,即使負載因子和Hash算法設計的再合理,也免不了會出現拉鏈過長的情況,一旦出現拉鏈過長,則會嚴重影響HashMap的性能。於是,在JDK1.8版本中,對數據結構做了進一步的優化,引入了紅黑樹。而當鏈表長度太長(默認超過8)時,鏈表就轉換為紅黑樹,利用紅黑樹快速增刪改查的特點提高HashMap的性能。
3.2 功能實現-方法
HashMap的內部功能實現很多,本文主要從根據key獲取哈希桶數組索引位置、put方法的詳細執行、擴容過程三個具有代表性的點深入展開講解。
3.2.1 確定哈希桶數組索引位置
不管增加、刪除、查找鍵值對,定位到哈希桶數組的位置都是很關鍵的第一步。HashMap定位數組索引位置,直接決定了hash方法的離散性能。先看看源碼的實現(方法一+方法二):
方法一:
static final int hash(Object key) { //jdk1.8 & jdk1.7
int h;
// h = key.hashCode() 為第一步 取hashCode值
// h ^ (h >>> 16) 為第二步 高位參與運算
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
方法二:
static int indexFor(int h, int length) { //jdk1.7的源碼,jdk1.8沒有這個方法,但是實現原理一樣的
return h & (length-1); //第三步 取模運算
}
這裏的Hash算法本質上就是三步:取key的hashCode值、高位運算、取模運算。
對於任意給定的對象,只要它的hashCode()返回值相同,那麽程序調用方法一所計算得到的Hash碼值總是相同的。 我們首先想到的就是把hash值對數組長度取模運算,這樣一來,元素的分布相對來說是比較均勻的。但是,模運算的消耗還是比較大的,在HashMap中是這樣做的:調用方法二來計算該對象應該保存在table數組的哪個索引處。
這個方法非常巧妙,它通過h & (table.length -1)來得到該對象的保存位,而HashMap底層數組的長度總是2的n次方,這是HashMap在速度上的優化。當length總是2的n次方時,h& (length-1)運算等價於對length取模,也就是h%length,但是&比%具有更高的效率。
在JDK1.8的實現中,優化了高位運算的算法,通過hashCode()的高16位異或低16位實現的:(h = k.hashCode()) ^ (h >>> 16),主要是從速度、功效、質量來考慮的,這麽做可以在數組table的length比較小的時候,也能保證高低Bit都參與到Hash的計算中,同時不會有太大的開銷。
下面舉例說明下,n為table的長度。
把高16位移到低16位上與原來的低16拉異或,既用到了高16位又用到了低16位。至於異或過後的高16位的1,則在最後被與掉了
3.2.2 分析HashMap的put方法
HashMap的put方法執行過程可以通過下圖來理解,自己有興趣可以去對比源碼更清楚地研究學習。
①.判斷鍵值對數組table[i]是否為空或為null,否則執行resize()進行擴容;
②.根據鍵值key計算hash值得到插入的數組索引i,如果table[i]==null,直接新建節點添加,轉向⑥,如果table[i]不為空,轉向③;
③.判斷table[i]的首個元素是否和key一樣,如果相同直接覆蓋value,否則轉向④,這裏的相同指的是hashCode以及equals;
④.判斷table[i] 是否為treeNode,即table[i] 是否是紅黑樹,如果是紅黑樹,則直接在樹中插入鍵值對,否則轉向⑤;
⑤.遍歷table[i],判斷鏈表長度是否大於8,大於8的話把鏈表轉換為紅黑樹,在紅黑樹中執行插入操作,否則進行鏈表的插入操作;遍歷過程中若發現key已經存在直接覆蓋value即可;
⑥.插入成功後,判斷實際存在的鍵值對數量size是否超多了最大容量threshold,如果超過,進行擴容。
JDK1.8HashMap的put方法源碼如下:
1 public V put(K key, V value) {
2 // 對key的hashCode()做hash
3 return putVal(hash(key), key, value, false, true);
4 }
5
6 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
7 boolean evict) {
8 Node<K,V>[] tab; Node<K,V> p; int n, i;
9 // 步驟①:tab為空則創建
10 if ((tab = table) == null || (n = tab.length) == 0)
11 n = (tab = resize()).length;
12 // 步驟②:計算index,並對null做處理
13 if ((p = tab[i = (n - 1) & hash]) == null)
14 tab[i] = newNode(hash, key, value, null);
15 else {
16 Node<K,V> e; K k;
17 // 步驟③:節點key存在,直接覆蓋value
18 if (p.hash == hash &&
19 ((k = p.key) == key || (key != null && key.equals(k))))
20 e = p;
21 // 步驟④:判斷該鏈為紅黑樹
22 else if (p instanceof TreeNode)
23 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
24 // 步驟⑤:該鏈為鏈表
25 else {
26 for (int binCount = 0; ; ++binCount) {
27 if ((e = p.next) == null) {
28 p.next = newNode(hash, key,value,null);
//鏈表長度大於8轉換為紅黑樹進行處理
29 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
30 treeifyBin(tab, hash);
31 break;
32 }
// key已經存在直接覆蓋value
33 if (e.hash == hash &&
34 ((k = e.key) == key || (key != null && key.equals(k))))
35 break;
36 p = e;
37 }
38 }
39
40 if (e != null) { // existing mapping for key
41 V oldValue = e.value;
42 if (!onlyIfAbsent || oldValue == null)
43 e.value = value;
44 afterNodeAccess(e);
45 return oldValue;
46 }
47 }
48 ++modCount;
49 // 步驟⑥:超過最大容量 就擴容
50 if (++size > threshold)
51 resize();
52 afterNodeInsertion(evict);
53 return null;
54 }
3.2.3 擴容機制
當然Java裏的數組是無法自動擴容的,方法是使用一個新的數組代替已有的容量小的數組。
我們分析下resize的源碼,鑒於JDK1.8融入了紅黑樹,較復雜,為了便於理解我們仍然使用JDK1.7的代碼,好理解一些,本質上區別不大,具體區別後文再說。
1 void resize(int newCapacity) { //傳入新的容量
2 Entry[] oldTable = table; //引用擴容前的Entry數組
3 int oldCapacity = oldTable.length;
4 if (oldCapacity == MAXIMUM_CAPACITY) { //擴容前的數組大小如果已經達到最大(2^30)了
5 threshold = Integer.MAX_VALUE; //修改閾值為int的最大值(2^31-1),這樣以後就不會擴容了
6 return;
7 }
8
9 Entry[] newTable = new Entry[newCapacity]; //初始化一個新的Entry數組
10 transfer(newTable); //!!將數據轉移到新的Entry數組裏
11 table = newTable; //HashMap的table屬性引用新的Entry數組
12 threshold = (int)(newCapacity * loadFactor);//修改閾值
這裏就是使用一個容量更大的數組來代替已有的容量小的數組,transfer()方法將原有Entry數組的元素拷貝到新的Entry數組裏。
1 void transfer(Entry[] newTable) {
2 Entry[] src = table; //src引用了舊的Entry數組
3 int newCapacity = newTable.length;
4 for (int j = 0; j < src.length; j++) { //遍歷舊的Entry數組
5 Entry<K,V> e = src[j]; //取得舊Entry數組的每個元素
6 if (e != null) {
7 src[j] = null;//釋放舊Entry數組的對象引用(for循環後,舊的Entry數組不再引用任何對象)
8 do {
9 Entry<K,V> next = e.next;
10 int i = indexFor(e.hash, newCapacity); //!!重新計算每個元素在數組中的位置
11 e.next = newTable[i]; //標記[1]
12 newTable[i] = e; //將元素放在數組上
13 e = next; //訪問下一個Entry鏈上的元素
14 } while (e != null);
15 }
16 }
17 }
newTable[i]的引用賦給了e.next,也就是使用了單鏈表的頭插入方式,同一位置上新元素總會被放在鏈表的頭部位置;這樣先放在一個索引上的元素終會被放到Entry鏈的尾部(如果發生了hash沖突的話),這一點和Jdk8 有區別,下文詳解。 在舊數組中同一條Entry鏈上的元素,通過重新計算索引位置後,有可能被放到了新數組的不同位置上。
下面舉個例子說明下擴容過程。假設了我們的hash算法就是簡單的用key mod 一下表的大小(也就是數組的長度)。其中的哈希桶數組table的size=2, 所以key = 3、7、5,put順序依次為 5、7、3。在mod 2以後都沖突在table[1]這裏了。這裏假設負載因子 loadFactor=1,即當鍵值對的實際大小size 大於 table的實際大小時進行擴容。接下來的三個步驟是哈希桶數組 resize成4,然後所有的Node重新rehash的過程。
下面我們講解下JDK8做了哪些優化。經過觀測可以發現,我們使用的是2次冪的擴展(指長度擴為原來2倍),所以,元素的位置要麽是在原位置,要麽是在原位置再移動2次冪的位置。看下圖可以明白這句話的意思,n為table的長度,圖(a)表示擴容前的key1和key2兩種key確定索引位置的示例,圖(b)表示擴容後key1和key2兩種key確定索引位置的示例,其中hash1是key1對應的哈希與高位運算結果。
元素在重新計算hash之後,因為n變為2倍,那麽n-1的mask範圍在高位多1bit(紅色),因此新的index就會發生這樣的變化:
因此,我們在擴充HashMap的時候,不需要像JDK7的實現那樣重新計算hash,只需要看看原來的hash值新增的那個bit是1還是0就好了,是0的話索引沒變,是1的話索引變成“原索引+oldCap”, 可以看看下圖為16擴充為32的resize示意圖:
這個設計確實非常的巧妙,既省去了重新計算hash值的時間,而且同時,由於新增的1bit是0還是1可以認為是隨機的,因此resize的過程,均勻的把之前的沖突的節點分散到新的bucket了。這一塊就是JDK8新增的優化點。 有一點註意區別,JDK7中rehash的時候,舊鏈表遷移新鏈表的時候,如果在新表的數組索引位置相同,則鏈表元素會倒置,但是從上圖可以看出,JDK8不會倒置。 有興趣的同學可以研究下JDK8的resize源碼,寫的很贊,如下:
1 final Node<K,V>[] resize() {
2 Node<K,V>[] oldTab = table;
3 int oldCap = (oldTab == null) ? 0 : oldTab.length;
4 int oldThr = threshold;
5 int newCap, newThr = 0;
6 if (oldCap > 0) {
7 // 超過最大值就不再擴充了,就只好隨你碰撞去吧
8 if (oldCap >= MAXIMUM_CAPACITY) {
9 threshold = Integer.MAX_VALUE;
10 return oldTab;
11 }
12 // 沒超過最大值,就擴充為原來的2倍
13 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
14 oldCap >= DEFAULT_INITIAL_CAPACITY)
15 newThr = oldThr << 1; // double threshold
16 }
17 else if (oldThr > 0) // initial capacity was placed in threshold
18 newCap = oldThr;
19 else { // zero initial threshold signifies using defaults
20 newCap = DEFAULT_INITIAL_CAPACITY;
21 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
22 }
23 // 計算新的resize上限
24 if (newThr == 0) {
25
26 float ft = (float)newCap * loadFactor;
27 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
28 (int)ft : Integer.MAX_VALUE);
29 }
30 threshold = newThr;
31 @SuppressWarnings({"rawtypes","unchecked"})
32 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
33 table = newTab;
34 if (oldTab != null) {
35 // 把每個bucket都移動到新的buckets中
36 for (int j = 0; j < oldCap; ++j) {
37 Node<K,V> e;
38 if ((e = oldTab[j]) != null) {
39 oldTab[j] = null;
40 if (e.next == null)
41 newTab[e.hash & (newCap - 1)] = e;
42 else if (e instanceof TreeNode)
43 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
44 else { // 鏈表優化重hash的代碼塊
45 Node<K,V> loHead = null, loTail = null;
46 Node<K,V> hiHead = null, hiTail = null;
47 Node<K,V> next;
48 do {
49 next = e.next;
50 // 原索引
51 if ((e.hash & oldCap) == 0) {
52 if (loTail == null)
53 loHead = e;
54 else
55 loTail.next = e;
56 loTail = e;
57 }
58 // 原索引+oldCap
59 else {
60 if (hiTail == null)
61 hiHead = e;
62 else
63 hiTail.next = e;
64 hiTail = e;
65 }
66 } while ((e = next) != null);
67 // 原索引放到bucket裏
68 if (loTail != null) {
69 loTail.next = null;
70 newTab[j] = loHead;
71 }
72 // 原索引+oldCap放到bucket裏
73 if (hiTail != null) {
74 hiTail.next = null;
75 newTab[j + oldCap] = hiHead;
76 }
77 }
78 }
79 }
80 }
81 return newTab;
82 }
4. 線程安全性
在多線程使用場景中,應該盡量避免使用線程不安全的HashMap,而使用線程安全的ConcurrentHashMap。那麽為什麽說HashMap是線程不安全的,下面舉例子說明在並發的多線程使用場景中使用HashMap可能造成死循環。
參考:
https://tech.meituan.com/java-hashmap.html
java之HashMap的演進