1. 程式人生 > >大數據技術之找博客共同好友案例

大數據技術之找博客共同好友案例

image mapred top 代碼 jar split set 代碼實現 port

7.9 找博客共同好友案例

1需求:

以下是博客的好友列表數據,冒號前是一個用戶,冒號後是該用戶的所有好友(數據中的好友關系是單向的)

技術分享圖片
A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J



多對多的關系
數據庫:學生       課程        成績表    
學生表和課程表的自然連接

A 1  100
A 2 90 A : B A : C B : C A I,K,C,B,G,F,H,O,D, B A,F,J,E, C A,B D A,B A-B C,D
friends.txt

求出哪些人兩兩之間有共同好友,及他倆的共同好友都有誰?

2)需求分析:

求出AB、C….等是好友

第一次輸出結果

A    I,K,C,B,G,F,H,O,D,
B    A,F,J,E,
C    A,E,B,H,F,G,K,
D    G,C,K,A,L,F,E,H,
E    G,M,L,H,A,F,B,D,
F    L,M,D,C,G,A,
G    M,
H    O,
I    O,C,
J    O,
K    B,
L    D,E,
M    E,F,
O    A,H,I,J,F,

第二次輸出結果

技術分享圖片
A-B    E C 
A-C    D F 
A-D    E F 
A-E    D B C 
A-F    O B C D E 
A-G    F E C D 
A-H    E C D O 
A-I    O 
A-J    O B 
A-K    D C 
A-L    F E D 
A-M    E F 
B-C    A 
B-D    A E 
B-E    C 
B-F    E A C 
B-G    C E A 
B-H    A E C 
B-I    A 
B-K    C A 
B-L    E 
B
-M E B-O A C-D A F C-E D C-F D A C-G D F A C-H D A C-I A C-K A D C-L D F C-M F C-O I A D-E L D-F A E D-G E A F D-H A E D-I A D-K A D-L E F D-M F E D-O A E-F D M C B E-G C D E-H C D E-J B E-K C D E-L D F-G D C A E F-H A D O E C F-I O A F-J B O F-K D C A F-L E D F-M E F-O A G-H D C E A G-I A G-K D A C G-L D F E G-M E F G-O A H-I O A H-J O H-K A C D H-L D E H-M E H-O A I-J O I-K A I-O A K-L D K-O A L-M E F
View Code

3)代碼實現:

1)第一次Mapper

package com.xyg.mapreduce.friends;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class OneShareFriendsMapper extends Mapper<LongWritable, Text, Text, Text>{
    
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
            throws IOException, InterruptedException {
        // 1 獲取一行 A:B,C,D,F,E,O
        String line = value.toString();
        
        // 2 切割
        String[] fileds = line.split(":");
        
        // 3 獲取person和好友
        String person = fileds[0];
        String[] friends = fileds[1].split(",");
        
        // 4寫出去
        for(String friend: friends){
            // 輸出 <好友,人>
            context.write(new Text(friend), new Text(person));
        }
    }
}

(2)第一次Reducer

package com.xyg.mapreduce.friends;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class OneShareFriendsReducer extends Reducer<Text, Text, Text, Text>{
    
    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {
        
        StringBuffer sb = new StringBuffer();
        //1 拼接
        for(Text person: values){
            sb.append(person).append(",");
        }
        
        //2 寫出
        context.write(key, new Text(sb.toString()));
    }
}

(3)第一次Driver

package com.xyg.mapreduce.friends;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class OneShareFriendsDriver {

    public static void main(String[] args) throws Exception {
        // 1 獲取job對象
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
        
        // 2 指定jar包運行的路徑
        job.setJarByClass(OneShareFriendsDriver.class);

        // 3 指定map/reduce使用的類
        job.setMapperClass(OneShareFriendsMapper.class);
        job.setReducerClass(OneShareFriendsReducer.class);
        
        // 4 指定map輸出的數據類型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        
        // 5 指定最終輸出的數據類型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        
        // 6 指定job的輸入原始所在目錄
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        // 7 提交
        boolean result = job.waitForCompletion(true);
        
        System.exit(result?1:0);
    }
}

(4)第二次Mapper

package com.xyg.mapreduce.friends;
import java.io.IOException;
import java.util.Arrays;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class TwoShareFriendsMapper extends Mapper<LongWritable, Text, Text, Text>{
    
    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        // A I,K,C,B,G,F,H,O,D,
        // 友 人,人,人
        String line = value.toString();
        String[] friend_persons = line.split("\t");

        String friend = friend_persons[0];
        String[] persons = friend_persons[1].split(",");

        Arrays.sort(persons);

        for (int i = 0; i < persons.length - 1; i++) {
            
            for (int j = i + 1; j < persons.length; j++) {
                // 發出 <人-人,好友> ,這樣,相同的“人-人”對的所有好友就會到同1個reduce中去
                context.write(new Text(persons[i] + "-" + persons[j]), new Text(friend));
            }
        }
    }
}

(5)第二次Reducer

package com.xyg.mapreduce.friends;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class TwoShareFriendsReducer extends Reducer<Text, Text, Text, Text>{
    
    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {
        
        StringBuffer sb = new StringBuffer();

        for (Text friend : values) {
            sb.append(friend).append(" ");
        }
        
        context.write(key, new Text(sb.toString()));
    }
}

(6)第二次Driver

package com.xyg.mapreduce.friends;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class TwoShareFriendsDriver {

    public static void main(String[] args) throws Exception {
        // 1 獲取job對象
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
        
        // 2 指定jar包運行的路徑
        job.setJarByClass(TwoShareFriendsDriver.class);

        // 3 指定map/reduce使用的類
        job.setMapperClass(TwoShareFriendsMapper.class);
        job.setReducerClass(TwoShareFriendsReducer.class);
        
        // 4 指定map輸出的數據類型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        
        // 5 指定最終輸出的數據類型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        
        // 6 指定job的輸入原始所在目錄
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        // 7 提交
        boolean result = job.waitForCompletion(true);
        
        System.exit(result?1:0);
    }
}

大數據技術之找博客共同好友案例