PCL 常用小知識
阿新 • • 發佈:2018-08-15
ati dex min [1] light identity office offic ase
關於
時間計算
pcl中計算程序運行時間有很多函數,其中利用控制臺的時間計算
首先必須包含頭文件 #include <pcl/console/time.h>
#include <pcl/console/time.h> pcl::console::TicToc time; time.tic(); //程序段 cout<<time.toc()/1000<<"s"<<endl;
pcl::PointCloud::Ptr和pcl::PointCloud的兩個類相互轉換
#include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/point_cloud.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloudPointer(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ> cloud; cloud = *cloudPointer; cloudPointer = cloud.makeShared();
查找點雲的x,y,z的極值
#include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/common/common.h>
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile<pcl::PointXYZ> ("your_pcd_file.pcd", *cloud); pcl::PointXYZ minPt, maxPt; pcl::getMinMax3D (*cloud, minPt, maxPt);
如果知道需要保存點的索引,如何從原點雲中拷貝點到新點雲?
#include <pcl/io/pcd_io.h> #include <pcl/common/impl/io.hpp> #include <pcl/point_types.h> #include <pcl/point_cloud.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile<pcl::PointXYZ>("C:\office3-after21111.pcd", *cloud); pcl::PointCloud<pcl::PointXYZ>::Ptr cloudOut(new pcl::PointCloud<pcl::PointXYZ>); std::vector<int > indexs = { 1, 2, 5 }; pcl::copyPointCloud(*cloud, indexs, *cloudOut);
取已知索引之外的點雲
pcl::PointIndices::Ptr inliers(new pcl::PointIndices); inliers->indices = pointIdxRadiusSearchMap; //已知索引的index std::vector<int> pointIdxRadiusSearchMap; pcl::ExtractIndices<pcl::PointXYZ> extract; extract.setInputCloud(_laser3d_map); extract.setIndices(inliers); extract.setNegative(true); //false: 篩選Index對應的點,true:過濾獲取Index之外的點 extract.filter(*map_3d_2);
如何從點雲裏刪除和添加點?
#include <pcl/io/pcd_io.h> #include <pcl/common/impl/io.hpp> #include <pcl/point_types.h> #include <pcl/point_cloud.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile<pcl::PointXYZ>("C:\office3-after21111.pcd", *cloud); pcl::PointCloud<pcl::PointXYZ>::iterator index = cloud->begin(); cloud->erase(index);//刪除第一個 index = cloud->begin() + 5; cloud->erase(cloud->begin());//刪除第5個 pcl::PointXYZ point = { 1, 1, 1 }; //在索引號為5的位置1上插入一點,原來的點後移一位 cloud->insert(cloud->begin() + 5, point); cloud->push_back(point);//從點雲最後面插入一點 std::cout << cloud->points[5].x;//輸出1
如果刪除的點太多建議用上面的方法拷貝到新點雲,再賦值給原點雲,如果要添加很多點,建議先resize,然後用循環向點雲裏的添加。
如何對點雲進行全局或局部變換
#include <pcl/io/pcd_io.h> #include <pcl/common/impl/io.hpp> #include <pcl/point_types.h> #include <pcl/point_cloud.h> #include <pcl/common/transforms.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile("path/.pcd",*cloud); //全局變化 //構造變化矩陣 Eigen::Matrix4f transform_1 = Eigen::Matrix4f::Identity(); float theta = M_PI/4; //旋轉的度數,這裏是45度 transform_1 (0,0) = cos (theta); //這裏是繞的Z軸旋轉 transform_1 (0,1) = -sin(theta); transform_1 (1,0) = sin (theta); transform_1 (1,1) = cos (theta); //transform_1 (0,2) = 0.3; //這樣會產生縮放效果 //transform_1 (1,2) = 0.6; // transform_1 (2,2) = 1; transform_1 (0,3) = 25; //這裏沿X軸平移 transform_1 (1,3) = 30; transform_1 (2,3) = 380; pcl::PointCloud<pcl::PointXYZ>::Ptr transform_cloud1 (new pcl::PointCloud<pcl::PointXYZ>); pcl::transformPointCloud(*cloud,*transform_cloud1,transform_1); //不言而喻
//第一個參數為輸入,第二個參數為輸入點雲中部分點集索引,第三個為存儲對象,第四個是變換矩陣。
pcl::transformPointCloud(*cloud,pcl::PointIndices indices,*transform_cloud1,matrix);
鏈接兩個點雲字段(兩點雲大小必須相同)
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile("/home/yxg/pcl/pcd/mid.pcd",*cloud); pcl::NormalEstimation<pcl::PointXYZ,pcl::Normal> ne; ne.setInputCloud(cloud); pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>()); ne.setSearchMethod(tree); pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>()); ne.setKSearch(8); //ne.setRadisuSearch(0.3); ne.compute(*cloud_normals); pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_nomal (new pcl::PointCloud<pcl::PointNormal>); pcl::concatenateFields(*cloud,*cloud_normals,*cloud_with_nomal);
刪除無效點
#include <pcl/point_cloud.h> #include <pcl/point_types.h> #include <pcl/filters/filter.h> #include <pcl/io/pcd_io.h> using namespace std; typedef pcl::PointXYZRGBA point; typedef pcl::PointCloud<point> CloudType; int main (int argc,char **argv) { CloudType::Ptr cloud (new CloudType); CloudType::Ptr output (new CloudType); pcl::io::loadPCDFile(argv[1],*cloud); cout<<"size is:"<<cloud->size()<<endl; vector<int> indices; pcl::removeNaNFromPointCloud(*cloud,*output,indices); cout<<"output size:"<<output->size()<<endl; pcl::io::savePCDFile("out.pcd",*output); return 0; }
xyzrgb格式轉換為xyz格式的點雲
#include <pcl/io/pcd_io.h> #include <ctime> #include <Eigen/Core> #include <pcl/point_types.h> #include <pcl/point_cloud.h> using namespace std; typedef pcl::PointXYZ point; typedef pcl::PointXYZRGBA pointcolor; int main(int argc,char **argv) { pcl::PointCloud<pointcolor>::Ptr input (new pcl::PointCloud<pointcolor>); pcl::io::loadPCDFile(argv[1],*input); pcl::PointCloud<point>::Ptr output (new pcl::PointCloud<point>); int M = input->points.size(); cout<<"input size is:"<<M<<endl; for (int i = 0;i <M;i++) { point p; p.x = input->points[i].x; p.y = input->points[i].y; p.z = input->points[i].z; output->points.push_back(p); } output->width = 1; output->height = M; cout<< "size is"<<output->size()<<endl; pcl::io::savePCDFile("output.pcd",*output); }
flann kdtree 查詢k近鄰
//平均密度計算 pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; //創建一個快速k近鄰查詢,查詢的時候若該點在點雲中,則第一個近鄰點是其本身 kdtree.setInputCloud(cloud); int k =2; float everagedistance =0; for (int i =0; i < cloud->size()/2;i++) { vector<int> nnh ; vector<float> squaredistance; //pcl::PointXYZ p; //p = cloud->points[i]; kdtree.nearestKSearch(cloud->points[i],k,nnh,squaredistance); everagedistance += sqrt(squaredistance[1]); //cout<<everagedistance<<endl; } everagedistance = everagedistance/(cloud->size()/2); cout<<"everage distance is : "<<everagedistance<<endl;
#include <pcl/kdtree/kdtree_flann.h> pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; //創建KDtree kdtree.setInputCloud (in_cloud); pcl::PointXYZ searchPoint; //創建目標點,(搜索該點的近鄰) searchPoint.x = 1; searchPoint.y = 2; searchPoint.z = 3; //查詢近鄰點的個數 int k = 10; //近鄰點的個數 std::vector<int> pointIdxNKNSearch(k); //存儲近鄰點集的索引 std::vector<float>pointNKNSquareDistance(k); //近鄰點集的距離 if (kdtree.nearestKSearch(searchPoint,k,pointIdxNKNSearch,pointNKNSquareDistance)>0) { for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i) std::cout << " " << in_cloud->points[ pointIdxNKNSearch[i] ].x << " " << in_cloud->points[ pointIdxNKNSearch[i] ].y << " " <<in_cloud->points[ pointIdxNKNSearch[i] ].z << " (squared distance: " <<pointNKNSquareDistance[i] << ")<<std::endl; } //半徑為r的近鄰點 float radius = 40.0f; //其實是求的40*40距離範圍內的點 std::vector<int> pointIdxRadiusSearch; //存儲的對應的平方距離 std::vector<float> a; if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, a) > 0 ) { for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i) std::cout << " " << in_cloud->points[ pointIdxRadiusSearch[i] ].x << " " <<in_cloud->points[ pointIdxRadiusSearch[i] ].y << " " << in_cloud->points[ pointIdxRadiusSearch[i] ].z << " (squared distance: " <<a[i] << ")" << std::endl; }
關於ply
文件
後綴命名為.ply
格式文件,常用的點雲數據文件。ply
文件不僅可以存儲點
數據,而且可以存儲網格
數據. 用emacs打開一個ply
文件,觀察表頭,如果表頭element face
的值為0,則表示該文件為點雲文件,如果element face
的值為某一正整數N,則表示該文件為網格文件,且包含N個網格.所以利用pcl讀取 ply 文件,不能一味用pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PintT>)
來讀取。在讀取ply
文件時候,首先要分清該文件是點雲還是網格類文件。如果是點雲文件,則按照一般的點雲類去讀取即可,官網例子,就是這樣。如果ply
文件是網格類,則需要
pcl::PolygonMesh mesh; pcl::io::loadPLYFile(argv[1],mesh); pcl::io::savePLYFile("result.ply", mesh);
讀取。(官網例子之所以能成功,是因為它對模型進行了細分處理,使得網格變成了點)
計算點的索引
例如sift算法中,pcl無法直接提供索引(主要原因是sift點是通過計算出來的,在某些不同參數下,sift點可能並非源數據中的點,而是某些點的近似),若要獲取索引,則可利用以下函數:
void getIndices (pointcloud::Ptr cloudin, pointcloud keypoints, pcl::PointIndices::Ptr indices) { pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; kdtree.setInputCloud(cloudin); std::vector<float>pointNKNSquareDistance; //近鄰點集的距離 std::vector<int> pointIdxNKNSearch; for (size_t i =0; i < keypoints.size();i++) { kdtree.nearestKSearch(keypoints.points[i],1,pointIdxNKNSearch,pointNKNSquareDistance); // cout<<"the distance is:"<<pointNKNSquareDistance[0]<<endl; // cout<<"the indieces is:"<<pointIdxNKNSearch[0]<<endl; indices->indices.push_back(pointIdxNKNSearch[0]); } }
其思想就是:將原始數據插入到flann的kdtree中,尋找keypoints的最近鄰,如果距離等於0,則說明是同一點,提取索引即可.
計算質心
Eigen::Vector4f centroid; //質心 pcl::compute3DCentroid(*cloud_smoothed,centroid); //估計質心的坐標
從網格提取頂點(將網格轉化為點)
#include <pcl/io/io.h> #include <pcl/io/pcd_io.h> #include <pcl/io/obj_io.h> #include <pcl/PolygonMesh.h> #include <pcl/point_cloud.h> #include <pcl/io/vtk_lib_io.h>//loadPolygonFileOBJ所屬頭文件; #include <pcl/io/vtk_io.h> #include <pcl/io/ply_io.h> #include <pcl/point_types.h> using namespace pcl;
int main(int argc,char **argv) { pcl::PolygonMesh mesh; //pcl::io::loadPolygonFileOBJ(argv[1], mesh); pcl::io::loadPLYFile(argv[1],mesh); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::fromPCLPointCloud2(mesh.cloud, *cloud); pcl::io::savePCDFileASCII("result.pcd", *cloud); return 0; }
以上代碼可以從.obj或.ply面片格式轉化為點雲類型。
PCL 常用小知識