1. 程式人生 > >Linux驅動之同步、互斥、阻塞的應用

Linux驅動之同步、互斥、阻塞的應用

desc argc 重映射 create 操作 fir 休眠 col type

同步、互斥、阻塞的概念:

同步:在並發程序設計中,各進程對公共變量的訪問必須加以制約,這種制約稱為同步。

互斥機制:訪問共享資源的代碼區叫做臨界區,這裏的共享資源可能被多個線程需要,但這些共享資源又不能被同時訪問,因此臨界區需要以某種互斥機制加以保護,以確保共享資源被互斥訪問。

阻塞與非阻塞:阻塞調用是指調用結果返回之前,當前線程會被掛起,調用線程只有在得到結果之後才會返回。非阻塞調用指在不能立刻得到結果之前,該調用不會阻塞當前線程,而是直接返回。

在按鍵驅動的例子中,如果有多個應用程序調用按鍵驅動的設備文件,這時候就要利用同步與互斥的概念對這個種情況進行處理:

1、利用原子變量標誌來判斷設備文件是否被打開,原子變量在操作的時候不能被打斷,它是利用關閉中斷的方式實現的,一旦關閉了中斷,內核將不能對進程進行調度,這就保證了原子性。

直接修改驅動代碼,先定義一個原子變量

 static atomic_t open_flag = ATOMIC_INIT(1);     //定義原子變量open_flag 並初始化為1

接著修改打開文件的函數與關閉文件的函數,初始化時open_flag 為1,一旦打開函數被調用則會減1變為0。關閉函數被調用後會加1又變成1。

a、在sixth_drv_open 中利用atomic_dec_and_test函數判斷是否已經被調用,如果返回值為0,說明已經被調用。調用atomic_inc函數,並且返回。

b、在sixth_drv_close中第調用atomic_inc。

static int sixth_drv_open (struct
inode * inode, struct file * file) { int ret; if(atomic_dec_and_test(&open_flag)==0)//自檢後是否為0,不為0說明已經被人調用 { atomic_inc(&open_flag);//原子變量+1 return -EBUSY; } ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "s1", (void * )&pins_desc[0]); if(ret) { printk(
"open failed 1\n"); return -1; } ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "s2", (void * )& pins_desc[1]); if(ret) { printk("open failed 2\n"); return -1; } ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "s3", (void * )&pins_desc[2]); if(ret) { printk("open failed 3\n"); return -1; } ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "s4", (void * )&pins_desc[3]); if(ret) { printk("open failed 4\n"); return -1; } return 0; } static int sixth_drv_close(struct inode * inode, struct file * file) { atomic_inc(&open_flag);//原子變量+1 free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]); free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]); free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]); free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]); return 0; }

2、利用信號量對打開的文件進行保護:信號量(semaphore)是用於保護臨界區的一種常用方法,只有得到信號量的進程才能執行臨界區代碼。當獲取不到信號量時,進程進入休眠等待狀態。 直接修改驅動代碼,先定義一個互斥鎖
static DECLARE_MUTEX(button_lock);     //定義互斥鎖

接著更改按鍵驅動中打開文件的函數與關閉文件的函數:

a、在sixth_drv_open函數中如果文件打開方式非阻塞的,那麽調用down_trylock函數獲取信號量,此函數如果獲取不到信號量,直接返回;如果打開文件的方式是阻塞的,那麽調用down函數,如果獲取不到信號量,則將進程休眠直到獲取信號量為止。

b、在sixth_drv_close函數利用up函數直接釋放掉信號量。

static int sixth_drv_open (struct inode * inode, struct file * file)
{
    int ret;

    if(file->f_flags & O_NONBLOCK)//非阻塞方式
    {
        if(down_trylock(&button_lock))//獲取信號量失敗則返回
            return -EBUSY;
    }
    else    
        down(&button_lock);//獲得信號量
    
    ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "s1", (void * )&pins_desc[0]);
    if(ret)
    {
        printk("open failed 1\n");
        return -1;
    }
    ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "s2", (void * )& pins_desc[1]);
    if(ret)
    {
        printk("open failed 2\n");
        return -1;
    }
    ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "s3", (void * )&pins_desc[2]);
    if(ret)
    {
        printk("open failed 3\n");
        return -1;
    }
    ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "s4", (void * )&pins_desc[3]);
    if(ret)
    {
        printk("open failed 4\n");
        return -1;
    }
    
    return 0;
}


static int sixth_drv_close(struct inode * inode, struct file * file)
{
    up(&button_lock);//釋放信號量
    
    free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]);

     free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]);

    free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]);

    free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]);

    return 0;
}

將完整的按鍵驅動的源代碼貼出

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <asm/io.h>        //含有iomap函數iounmap函數
#include <asm/uaccess.h>//含有copy_from_user函數
#include <linux/device.h>//含有類相關的處理函數
#include <asm/arch/regs-gpio.h>//含有S3C2410_GPF0等相關的
#include <linux/irq.h>    //含有IRQ_HANDLED\IRQ_TYPE_EDGE_RISING
#include <asm-arm/irq.h>   //含有IRQT_BOTHEDGE觸發類型
#include <linux/interrupt.h> //含有request_irq、free_irq函數
#include <linux/poll.h>
#include <asm-generic/errno-base.h>  //含有各種錯誤返回值
//#include <asm-arm\arch-s3c2410\irqs.h>



static struct class *sixth_drv_class;//
static struct class_device *sixth_drv_class_dev;//類下面的設備
static int sixthmajor;

static unsigned long *gpfcon = NULL;
static unsigned long *gpfdat = NULL;
static unsigned long *gpgcon = NULL;
static unsigned long *gpgdat = NULL;

struct fasync_struct *sixth_fasync;
    
static unsigned int key_val;

struct pin_desc 
{
    unsigned int pin;
    unsigned int key_val;
};

static struct pin_desc  pins_desc[4] = 
{
    {S3C2410_GPF0,0x01},
    {S3C2410_GPF2,0x02},
    {S3C2410_GPG3,0x03},
    {S3C2410_GPG11,0x04}
};


static unsigned int ev_press;
static DECLARE_WAIT_QUEUE_HEAD(button_waitq);//註冊一個等待隊列button_waitq

 static atomic_t open_flag = ATOMIC_INIT(1);     //定義原子變量open_flag 並初始化為1

static DECLARE_MUTEX(button_lock);     //定義互斥鎖

 
/*
  *0x01、0x02、0x03、0x04表示按鍵被按下
  */
  
/*
  *0x81、0x82、0x83、0x84表示按鍵被松開
  */

/*
  *利用dev_id的值為pins_desc來判斷是哪一個按鍵被按下或松開
  */
static irqreturn_t buttons_irq(int irq, void *dev_id)
{
    unsigned int pin_val;
    struct pin_desc * pin_desc = (struct pin_desc *)dev_id;//取得哪個按鍵被按下的狀態
    
    pin_val = s3c2410_gpio_getpin(pin_desc->pin);
    
    if(pin_val) //按鍵松開
        key_val = 0x80 | pin_desc->key_val;
    else
        key_val = pin_desc->key_val;


    wake_up_interruptible(&button_waitq);   /* 喚醒休眠的進程 */
    ev_press = 1;    
    
    kill_fasync(&sixth_fasync, SIGIO, POLL_IN);//發生信號給進程
    
    return IRQ_HANDLED;
}



static int sixth_drv_open (struct inode * inode, struct file * file)
{
    int ret;


//    if(atomic_dec_and_test(&open_flag)==0)//自檢後是否為0,不為0說明已經被人調用
//    {
//        atomic_inc(&open_flag);//原子變量+1
//        return -EBUSY;
//    }
    if(file->f_flags & O_NONBLOCK)//非阻塞方式
    {
        if(down_trylock(&button_lock))//獲取信號量失敗則返回
            return -EBUSY;
    }
    else    
        down(&button_lock);//獲得信號量
    
    ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "s1", (void * )&pins_desc[0]);
    if(ret)
    {
        printk("open failed 1\n");
        return -1;
    }
    ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "s2", (void * )& pins_desc[1]);
    if(ret)
    {
        printk("open failed 2\n");
        return -1;
    }
    ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "s3", (void * )&pins_desc[2]);
    if(ret)
    {
        printk("open failed 3\n");
        return -1;
    }
    ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "s4", (void * )&pins_desc[3]);
    if(ret)
    {
        printk("open failed 4\n");
        return -1;
    }
    
    return 0;
}


static int sixth_drv_close(struct inode * inode, struct file * file)
{
//    atomic_inc(&open_flag);//原子變量+1
    up(&button_lock);//釋放信號量
    
    free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]);

     free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]);

    free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]);

    free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]);

    return 0;
}

static ssize_t sixth_drv_read(struct file * file, char __user * userbuf, size_t count, loff_t * off)
{
    int ret;

    if(count != 1)
    {
        printk("read error\n");
        return -1;
    }

    if(file->f_flags & O_NONBLOCK)//非阻塞方式
    {
        if(!ev_press)//判斷是否有按鍵按下,如果沒有直接返回
        {
                key_val = 0;
                copy_to_user(userbuf, &key_val, 1);
                return -EBUSY;
        }
    }
    else//如果沒有按鍵動作,直接進入休眠
        wait_event_interruptible(button_waitq, ev_press);//將當前進程放入等待隊列button_waitq中
    
    ret = copy_to_user(userbuf, &key_val, 1);
    ev_press = 0;//按鍵已經處理可以繼續睡眠
    
    if(ret)
    {
        printk("copy error\n");
        return -1;
    }
    
    return 1;
}

static unsigned int sixth_drv_poll(struct file *file, poll_table *wait)
{
    unsigned int ret = 0;
    poll_wait(file, &button_waitq, wait);//將當前進程放到button_waitq列表

    if(ev_press)
        ret |=POLLIN;//說明有數據被取到了

    return ret;
}



static int sixth_drv_fasync(int fd, struct file * file, int on)
{
    int err;
    printk("fansync_helper\n");
    err = fasync_helper(fd, file, on, &sixth_fasync);//初始化sixth_fasync
    if (err < 0)
        return err;
    return 0;
}


static struct file_operations sixth_drv_ops = 
{
    .owner   = THIS_MODULE,
    .open    =  sixth_drv_open,
    .read     = sixth_drv_read,
    .release = sixth_drv_close,
    .poll      =  sixth_drv_poll,
    .fasync   = sixth_drv_fasync,
    
};

static int sixth_drv_init(void)
{
    sixthmajor = register_chrdev(0, "buttons", &sixth_drv_ops);//註冊驅動程序

    if(sixthmajor < 0)
        printk("failes 1 buttons_drv register\n");
    
    sixth_drv_class = class_create(THIS_MODULE, "buttons");//創建類
    if(sixth_drv_class < 0)
        printk("failes 2 buttons_drv register\n");
    sixth_drv_class_dev = class_device_create(sixth_drv_class, NULL, MKDEV(sixthmajor,0), NULL,"buttons");//創建設備節點
    if(sixth_drv_class_dev < 0)
        printk("failes 3 buttons_drv register\n");

    
    gpfcon = ioremap(0x56000050, 16);//重映射
    gpfdat = gpfcon + 1;
    gpgcon = ioremap(0x56000060, 16);//重映射
    gpgdat = gpgcon + 1;

    printk("register buttons_drv\n");
    return 0;
}

static void sixth_drv_exit(void)
{
    unregister_chrdev(sixthmajor,"buttons");

    class_device_unregister(sixth_drv_class_dev);
    class_destroy(sixth_drv_class);

    iounmap(gpfcon);
    iounmap(gpgcon);

    printk("unregister buttons_drv\n");
}


module_init(sixth_drv_init);
module_exit(sixth_drv_exit);

MODULE_LICENSE("GPL");

接著改寫測試程序,測試加入阻塞方式打開文件,在fd = open(filename, O_RDWR|O_NONBLOCK)函數中加入O_NONBLOCK即可以按阻塞方式打開。

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <signal.h>

static int fd;

//static void fifth_testsignal(int signum)
//{
//    unsigned char key_val;
//    
//    printf("signal = %d\n",signum);

//    read(fd, &key_val, 1);
//         printf("signumkey_val: 0x%x\n\n",key_val);
//}

/*
  *usage ./buttonstest
  */
int main(int argc, char **argv)
{
    char* filename="dev/buttons";
   int oflags,ret;
   unsigned char key_val;
    
    fd = open(filename, O_RDWR|O_NONBLOCK);//打開dev/firstdrv設備文件,非阻塞方式打開
    if (fd < 0)//小於0說明沒有成功
    {
        printf("error, can‘t open %s\n", filename);
        return 0;
    }
    
    if(argc !=1)
    {
        printf("Usage : %s ",argv[0]);
     return 0;
    }
//    signal(SIGIO, fifth_testsignal);//註冊一個信號,函數為fifth_testsignal
//    
//    fcntl(fd, F_SETOWN, getpid());  // 告訴內核,發給誰
//    
//    oflags = fcntl(fd, F_GETFL); //取得當前的狀態
//    
//    fcntl(fd, F_SETFL, oflags | FASYNC);  // 改變fasync標記,最終會調用到驅動的faync > fasync_helper:初始化/釋放fasync_struct
    
  while(1)
  {
       ret = read(fd, &key_val, 1);
         printf("ret = %d,key_val: 0x%x\n",ret,key_val);
    sleep(5);
  }
    
   return 0;
}
將驅動程序與測試程序編譯後運行。發現以阻塞方式運行的測試程序如果再次運行會處於睡眠狀態;如果以非阻塞方式再次運行程序,會導致第二個程序退出。 以上只是記錄了怎麽調用內核函數來實現互斥、阻塞機制,具體原理還未分析,後面再分析。

Linux驅動之同步、互斥、阻塞的應用