1. 程式人生 > >HDU 1402 A * B Problem Plus ( FFT )

HDU 1402 A * B Problem Plus ( FFT )

amp hid sin 兩個 close 形式 hide utc closed

題意 : 求兩個大數相乘的結果

分析 :

可以將數拆成多項式的形式

例如 12345

(1 * x^4) + (2 * x^3) + (3 * x^2) + (4 * x^1) + (5 * x^0)

其中 x == 10

那麽兩個數的相乘就可以變成兩個多項式的相乘

可以利用 FFT 來優化

註意最後的結果每個系數可能是兩位數(不可能超過兩位)

所以需要手動進位、具體看代碼

技術分享圖片
#include<bits/stdc++.h>
using namespace std;

#define L(x) (1 << (x))
const double PI = acos(-1.0
); const int maxn = (1<<17) + (int)1e3; double ax[maxn], ay[maxn], bx[maxn], by[maxn]; int revv(int x, int bits) { int ret = 0; for (int i = 0; i < bits; i++){ ret <<= 1; ret |= x & 1; x >>= 1; } return ret; } void fft(double * a, double
* b, int n, bool rev) { int bits = 0; while (1 << bits < n) ++bits; for (int i = 0; i < n; i++){ int j = revv(i, bits); if (i < j) swap(a[i], a[j]), swap(b[i], b[j]); } for (int len = 2; len <= n; len <<= 1){ int half = len >> 1
; double wmx = cos(2 * PI / len), wmy = sin(2 * PI / len); if (rev) wmy = -wmy; for (int i = 0; i < n; i += len){ double wx = 1, wy = 0; for (int j = 0; j < half; j++){ double cx = a[i + j], cy = b[i + j]; double dx = a[i + j + half], dy = b[i + j + half]; double ex = dx * wx - dy * wy, ey = dx * wy + dy * wx; a[i + j] = cx + ex, b[i + j] = cy + ey; a[i + j + half] = cx - ex, b[i + j + half] = cy - ey; double wnx = wx * wmx - wy * wmy, wny = wx * wmy + wy * wmx; wx = wnx, wy = wny; } } } if (rev){ for (int i = 0; i < n; i++) a[i] /= n, b[i] /= n; } } int Convolution(int a[],int na,int b[],int nb,int ans[]) //兩個數組求卷積,有時ans數組要開成long long { int len = max(na, nb), ln; for(ln=0; L(ln)<len; ++ln); len=L(++ln); for (int i = 0; i < len ; ++i){ if (i >= na) ax[i] = 0, ay[i] =0; else ax[i] = a[i], ay[i] = 0; } fft(ax, ay, len, 0); for (int i = 0; i < len; ++i){ if (i >= nb) bx[i] = 0, by[i] = 0; else bx[i] = b[i], by[i] = 0; } fft(bx, by, len, 0); for (int i = 0; i < len; ++i){ double cx = ax[i] * bx[i] - ay[i] * by[i]; double cy = ax[i] * by[i] + ay[i] * bx[i]; ax[i] = cx, ay[i] = cy; } fft(ax, ay, len, 1); for (int i = 0; i < len; ++i) ans[i] = (int)(ax[i] + 0.5); return len; } char strA[maxn], strB[maxn]; int A[maxn], B[maxn], C[maxn]; int main(void) { while(~scanf("%s %s", strA, strB)){ int lenA = strlen(strA); int lenB = strlen(strB); for(int i=0; i<lenA; i++) A[i] = strA[lenA-i-1] - 0; for(int i=0; i<lenB; i++) B[i] = strB[lenB-i-1] - 0; int lenC = Convolution(A, lenA, B, lenB, C); for(int i=0; i<lenC; i++){ C[i+1] += C[i] / 10; C[i] %= 10; } lenC--; while(lenC > 0 && C[lenC] <= 0) lenC--; for(int i=lenC; i>=0; i--) putchar(C[i] + 0); puts(""); } return 0; }
View Code

HDU 1402 A * B Problem Plus ( FFT )