UVa 10375 Choose and divide (唯一分解定理)
阿新 • • 發佈:2018-09-27
divide include n! reg pan gist inline har class , \(q!\), \((p - q)!\), \(r\), \(s\), \((r - s)!\)的每個質因子的冪,進而表示出\(C(p, q) / C(r, s)\), 最後用
題目
題目大意
已知\(C(m, n) = m! / (n!(m - n)!)\), 輸入整數\(p\), \(q\), \(r\), \(s\)(\(p ≥ q\), \(r ≥ s\), \(p\), \(q\), \(r\), \(s ≤ 10000\)), 計算\(C(p, q) / C(r, s)\)。輸出保證不超過\(10^8\), 保留\(5\)位小數
題解
這道題還是挺水吧...
首先如果直接算出\(C(p, q)\)和\(C(r, s)\)是肯定不可能的, C++存不下這麽大的數。
這時候就要用到唯一分解定理, 根據組合數的定義, 顯然分子分母可以約分, 那麽就可以先預處理出小於10000
的每個質數, 並求出\(p!\)
cmath
庫中的pow
函數計算就可以了。
當然這道題也可以暴力邊乘邊除來防止答案太大, 雖然精度損失有點大但也可以過這道題了
代碼
唯一分解定理:
#include <cmath> #include <cstdio> #include <vector> #include <cstring> std::vector<int> prime; int power[10000]; int p, q, r, s; double ans; bool is_prime[10000]; inline void AddInteger(register int, const int&); inline void AddFactorial(const int&, const int&); int main(int argc, char const *argv[]) { freopen("test.txt", "w", stdout); memset(is_prime, 1, sizeof(is_prime)); is_prime[0] = is_prime[1] = 0; for (register int i(2); i <= 10000; ++i) { if (is_prime[i]) { prime.push_back(i); for (register int j(2); i * j <= 10000; ++j) { is_prime[i * j] = 0; } } } while (~scanf("%d %d %d %d", &p, &q, &r, &s)) { memset(power, 0, sizeof(power)); AddFactorial(p, 1), AddFactorial(q, -1), AddFactorial(p - q, -1), AddFactorial(r, -1), AddFactorial(s, 1), AddFactorial(r - s, 1); ans = 1.0; for (auto i : prime) { ans *= pow(double(i), double(power[i])); } printf("%.5lf\n", ans); } return 0; } inline void AddInteger(register int n, const int &d) { for (auto i : prime) { if (n == 1) break; while (!(n % i)) { n /= i, power[i] += d; } } } inline void AddFactorial(const int &n, const int &d) { for (register int i(1); i <= n; ++i) { AddInteger(i, d); } }
暴力:
#include <cstdio> #include <algorithm> double ans, p, q, r, s; int main(int argc, char const *argv[]) { while (~scanf("%lf %lf %lf %lf", &p, &q, &r, &s)) { q = std::min(q, p - q), s = std::min(s, r - s); ans = 1.0; for (register double i(1.0); i <= q || i <= s; ++i) { if (i <= q) ans = ans * (p - q + i) / i; if (i <= s) ans = ans / (r - s + i) * i; } printf("%.5lf\n", ans); } return 0; }
UVa 10375 Choose and divide (唯一分解定理)