1. 程式人生 > >CF418D Big Problems for Organizers

CF418D Big Problems for Organizers

比較 答案 continue 加減 printf code nlog fin eps

傳送門

題意,給一棵樹,每次給兩個點\(x,y\),求\(\max_{i=1}^{n}(\min(di_{x,i},di_{y,i}))\)

看std看了好久

以下是一個優秀的在線做法,\(O(nlogn)\)預處理,每次詢問可以做到\(O(1)\)

首先把直徑扣出來,然後就可以把整棵樹看成一條直徑上掛了n棵樹,預處理每個點到直徑的最短距離,和直徑上每個點掛的樹中距離這個點最遠的距離\(d_i\)

對於每次詢問,造成答案的點要麽是直徑的端點,要麽是兩個點路徑上的某個直徑點掛的樹的最遠距離的點,於是可以分類討論.第一類比較好算,第二類的話,用個st表存\(d_i\),每次在距離\(x\)\(y\)

更近的區間內取最大值,再加加減減

詳見代碼

#include<bits/stdc++.h>
#define il inline
#define re register
#define LL long long
#define ull unsigned long long
#define db double
#define eps (1e-7)

using namespace std;
const int N=100000+10;
il LL rd()
{
    LL x=0,w=1;char ch=0;
    while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
    return x*w;
}
int to[N<<1],nt[N<<1],hd[N],tot=1;
il void add(int x,int y)
{
  ++tot,to[tot]=y,nt[tot]=hd[x],hd[x]=tot;
  ++tot,to[tot]=x,nt[tot]=hd[y],hd[y]=tot;
}
int n,nn,m,st[N],de[N],fa[N],a1,a2,rtt,id[N],d[N],lz[N];
int ma[N][18],mi[N][18];
bool v[N];
void dfs(int x,int ffa)
{
  if(de[x]>de[rtt]) rtt=x;
  for(int i=hd[x];i;i=nt[i])
    {
      int y=to[i];
      if(y==ffa) continue;
      de[y]=de[x]+1,fa[y]=x;
      dfs(y,x);
    }     
}
void dd(int x,int ffa,int ii)
{
  id[x]=ii,de[x]=de[ffa]+1; //把深度處理成到直徑上點的距離
  d[ii]=max(d[ii],de[x]);
  for(int i=hd[x];i;i=nt[i])
    {
      int y=to[i];
      if(y==ffa||v[y]) continue;
      dd(y,x,ii);
    }     
}
il void init()
{
  for(int i=1;i<=m;i++) dd(st[i],0,i),lz[i]=log2(i);
  for(int i=1;i<=m;i++) ma[i][0]=d[i]+i,mi[i][0]=d[i]-i;
  for(int j=1;j<=nn;j++)
    for(int i=1;i+(1<<(j-1))<=m;i++)
      {
        ma[i][j]=max(ma[i][j-1],ma[i+(1<<(j-1))][j-1]);
        mi[i][j]=max(mi[i][j-1],mi[i+(1<<(j-1))][j-1]);
      }
}
il int quer(int l,int r,int o)
{
  if(l>r) return -1e9;
  int j=lz[r-l+1];
  if(o==1) return max(mi[l][j],mi[r-(1<<j)+1][j]);
  return max(ma[l][j],ma[r-(1<<j)+1][j]);
}

int main()
{
  n=rd();
  nn=log(n)/log(2)+1;
  for(int i=1;i<n;i++)
    {
      int x=rd(),y=rd();
      add(x,y);
    }
  dfs(1,0),a1=rtt,rtt=0,fa[a1]=0,dfs(a1,0),a2=rtt;
  int nw=a2;
  while(nw)
    {
      st[++m]=nw,v[nw]=true,nw=fa[nw];
    }
  for(int i=1;i<=m/2;i++) swap(st[i],st[m-i+1]);
  de[0]=-1,init();
  int q=rd(),an=0;
  while(q--)
    {
      int x=rd(),y=rd();
      an=0;
      if(id[x]>id[y]) swap(x,y);
      LL ss=id[x]-de[x]+id[y]+de[y];    //ss其實是x和y路徑上中間點的直徑點編號*2
      if(id[x]==id[y]) an=max(id[x]-1,m-id[y])+min(de[x],de[y]);
      else if(ss<=id[x]*2) an=max(id[y]-1,m-id[y])+de[y];
      else if(ss>=id[y]*2) an=max(id[x]-1,m-id[x])+de[x];
      else ss/=2,an=max(max(id[x]-1,quer(id[x]+1,ss,0)-id[x])+de[x],de[y]+max(m-id[y],quer(ss+1,id[y]-1,1)+id[y]));   //對於x,到中間點區間內的答案為max(id[i]-id[x]+d[i]),y類似
      printf("%d\n",an);
    }
  return 0;
}

CF418D Big Problems for Organizers