tensorflow在訓練和驗證時監視不同的summary的操作
阿新 • • 發佈:2018-10-22
write scalar all glob sca val rain 不同 valid
如果想在訓練和驗證時監視不同的summary,將train summary ops和val summary ops放進不同的集合中即可。
train_writer = tf.summary.FileWriter(log_dir + ‘/train‘, sess.graph) val_writer = tf.summary.FileWriter(log_dir + ‘/val‘, sess.graph) # 假設train_loss和val_loss的計算方式不同 tf.summary.scalar("train_loss", train_loss, collections=[‘train‘]) tf.summary.scalar("val_loss", val_loss, collections=[‘val‘]) train_summary_ops = tf.summary.merge_all(‘train‘) val_summary_ops = tf.summary.merge_all(‘val‘) # training ... train_summary = sess.run(train_summary_ops, feed_dict=train_dict) train_writer.add_summary(train_summary, global_step) # validation ... val_summary = sess.run(val_summary_ops, feed_dict=val_dict) val_writer.add_summary(val_summary, global_step) # end train_writer.close() val_writer.close()
tensorflow在訓練和驗證時監視不同的summary的操作