1. 程式人生 > >繪制學習模型的訓練損失和驗證損失圖形、繪制訓練精度和驗證精度圖形

繪制學習模型的訓練損失和驗證損失圖形、繪制訓練精度和驗證精度圖形

atp div del bsp mat clas ali model hist

history = model.fit()

繪制訓練損失和驗證損失

import matplotlib.pyplot as plt

loss = history.history[loss]
val_loss = history.history[val_loss]

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, bo, label = Training loss)
plt.plot(epochs, val_loss, b, label = Validation loss)
plt.title(Training And Validation Loss
) plt.xlabel(Epochs) plt.ylabel(Loss) plt.legend() plt.show()

繪制訓練精度和驗證精度

plt.clf()

acc = history.history[acc]
val_acc = history.history[val_acc]

plt.plot(epochs, acc, bo, label = Training acc)
plt.plot(epochs, val_acc, b, label = Validation acc)
plt.title(Training And Validation Accuracy
) plt.xlabel(Epochs) plt.ylabel(Accuracy) plt.legend() plt.show()

繪制學習模型的訓練損失和驗證損失圖形、繪制訓練精度和驗證精度圖形