1. 程式人生 > >2018.10.26 bzoj2721: [Violet 5]櫻花(數論)

2018.10.26 bzoj2721: [Violet 5]櫻花(數論)

傳送門
推一波式子:
1 x + 1 y = 1

n ! \frac 1 x+\frac 1 y=\frac 1 {n!}
=> x y
x n ! y n ! xy-x*n!-y*n!
= 0 0
=> ( x n ! ) ( y n ! ) = ( n ! ) 2 (x-n!)(y-n!)=(n!)^2
於是把 ( n ! ) 2 (n!)^2 質因數分解就行了。
程式碼:

#include<bits/stdc++.h>
using namespace std;
const int mod=1e9+7,N=1e6+5;
int n,pri[N],tot=0,cnt[N],ans=1;
bool vis[N];
inline void solve(int x){
	for(int i=1;i<=tot&&pri[i]*pri[i]<=x;++i){
		if(x==1)return;
		if(x!=x/pri[i]*pri[i])continue;
		while(x==x/pri[i]*pri[i])++cnt[pri[i]],x=x/pri[i];
	}
	if(x^1)++cnt[x];
}
int main(){
	scanf("%d",&n);
	for(int i=2;i<=n;++i){
		if(!vis[i])pri[++tot]=i;
		for(int j=1;i*pri[j]<=n;++j){
			int k=i*pri[j];
			vis[k]=1;
			if(i==i/pri[j]*pri[j])break;
		}
		solve(i);
	}
	for(int i=1;i<=n;++i)ans=1ll*ans*(cnt[i]?(cnt[i]<<1|1):1)%mod;
	cout<<ans;
	return 0;
}