scrapy-redis scrapy-redis使用以及剖析
scrapy-redis使用以及剖析
scrapy-redis是一個基於redis的scrapy元件,通過它可以快速實現簡單分散式爬蟲程式,該元件本質上提供了三大功能:
- scheduler - 排程器
- dupefilter - URL去重規則(被排程器使用)
- pipeline - 資料持久化
scrapy-redis元件
1. URL去重
?1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
定義去重規則(被排程器呼叫並應用)
a. 內部會使用以下配置進行連線Redis
# REDIS_HOST = 'localhost' # 主機名
# REDIS_PORT = 6379 # 埠
# REDIS_URL = 'redis://user:[email protected]:9001' # 連線URL(優先於以上配置)
# REDIS_PARAMS = {} # Redis連線引數 預設:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
# REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定連線Redis的Python模組 預設:redis.StrictRedis
# REDIS_ENCODING = "utf-8" # redis編碼型別 預設:'utf-8'
b. 去重規則通過redis的集合完成,集合的Key為:
key
=
defaults.DUPEFILTER_KEY
%
{
'timestamp'
:
int
(time.time())}
預設配置:
DUPEFILTER_KEY
=
'dupefilter:%(timestamp)s'
c. 去重規則中將url轉換成唯一標示,然後在redis中檢查是否已經在集合中存在
from
scrapy.utils
import
request
from
scrapy.http
import
Request
req
=
Request(url
=
'http://www.cnblogs.com/wupeiqi.html'
)
result
=
request.request_fingerprint(req)
print
(result)
# 8ea4fd67887449313ccc12e5b6b92510cc53675c
PS:
-
URL引數位置不同時,計算結果一致;
-
預設請求頭不在計算範圍,include_headers可以設定指定請求頭
示例:
from
scrapy.utils
import
request
from
scrapy.http
import
Request
req
=
Request(url
=
'http://www.baidu.com?name=8&id=1'
,callback
=
lambda
x:
print
(x),cookies
=
{
'k1'
:
'vvvvv'
})
result
=
request.request_fingerprint(req,include_headers
=
[
'cookies'
,])
print
(result)
req
=
Request(url
=
'http://www.baidu.com?id=1&name=8'
,callback
=
lambda
x:
print
(x),cookies
=
{
'k1'
:
666
})
result
=
request.request_fingerprint(req,include_headers
=
[
'cookies'
,])
print
(result)
"""
# Ensure all spiders share same duplicates filter through redis.
# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
|
2. 排程器
?1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
"""
排程器,排程器使用PriorityQueue(有序集合)、FifoQueue(列表)、LifoQueue(列表)進行儲存請求,並且使用RFPDupeFilter對URL去重
a. 排程器
SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 預設使用優先順序佇列(預設),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 排程器中請求存放在redis中的key
SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 對儲存到redis中的資料進行序列化,預設使用pickle
SCHEDULER_PERSIST = True # 是否在關閉時候保留原來的排程器和去重記錄,True=保留,False=清空
SCHEDULER_FLUSH_ON_START = True # 是否在開始之前清空 排程器和去重記錄,True=清空,False=不清空
SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去排程器中獲取資料時,如果為空,最多等待時間(最後沒資料,未獲取到)。
SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重規則,在redis中儲存時對應的key
SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重規則對應處理的類
"""
# Enables scheduling storing requests queue in redis.
SCHEDULER
=
"scrapy_redis.scheduler.Scheduler"
# Default requests serializer is pickle, but it can be changed to any module
# with loads and dumps functions. Note that pickle is not compatible between
# python versions.
# Caveat: In python 3.x, the serializer must return strings keys and support
# bytes as values. Because of this reason the json or msgpack module will not
# work by default. In python 2.x there is no such issue and you can use
# 'json' or 'msgpack' as serializers.
# SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat"
# Don't cleanup redis queues, allows to pause/resume crawls.
# SCHEDULER_PERSIST = True
# Schedule requests using a priority queue. (default)
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'
# Alternative queues.
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue'
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue'
# Max idle time to prevent the spider from being closed when distributed crawling.
# This only works if queue class is SpiderQueue or SpiderStack,
# and may also block the same time when your spider start at the first time (because the queue is empty).
# SCHEDULER_IDLE_BEFORE_CLOSE = 10
|
3. 資料持久化
?1 2 3 4 5 6 7 8 |
2.
定義持久化,爬蟲
yield
Item物件時執行RedisPipeline
a. 將item持久化到redis時,指定key和序列化函式
REDIS_ITEMS_KEY
=
'%(spider)s:items'
REDIS_ITEMS_SERIALIZER
=
'json.dumps'
b. 使用列表儲存item資料
|
4. 起始URL相關
?1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
"""
起始URL相關
a. 獲取起始URL時,去集合中獲取還是去列表中獲取?True,集合;False,列表
REDIS_START_URLS_AS_SET = False # 獲取起始URL時,如果為True,則使用self.server.spop;如果為False,則使用self.server.lpop
b. 編寫爬蟲時,起始URL從redis的Key中獲取
REDIS_START_URLS_KEY = '%(name)s:start_urls'
"""
# If True, it uses redis' ``spop`` operation. This could be useful if you
# want to avoid duplicates in your start urls list. In this cases, urls must
# be added via ``sadd`` command or you will get a type error from redis.
# REDIS_START_URLS_AS_SET = False
# Default start urls key for RedisSpider and RedisCrawlSpider.
# REDIS_START_URLS_KEY = '%(name)s:start_urls'
|
scrapy-redis示例
# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" # # # from scrapy_redis.scheduler import Scheduler # from scrapy_redis.queue import PriorityQueue # SCHEDULER = "scrapy_redis.scheduler.Scheduler" # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 預設使用優先順序佇列(預設),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表) # SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 排程器中請求存放在redis中的key # SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 對儲存到redis中的資料進行序列化,預設使用pickle # SCHEDULER_PERSIST = True # 是否在關閉時候保留原來的排程器和去重記錄,True=保留,False=清空 # SCHEDULER_FLUSH_ON_START = False # 是否在開始之前清空 排程器和去重記錄,True=清空,False=不清空 # SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去排程器中獲取資料時,如果為空,最多等待時間(最後沒資料,未獲取到)。 # SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重規則,在redis中儲存時對應的key # SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重規則對應處理的類 # # # # REDIS_HOST = '10.211.55.13' # 主機名 # REDIS_PORT = 6379 # 埠 # # REDIS_URL = 'redis://user:[email protected]:9001' # 連線URL(優先於以上配置) # # REDIS_PARAMS = {} # Redis連線引數 預設:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,}) # # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定連線Redis的Python模組 預設:redis.StrictRedis # REDIS_ENCODING = "utf-8" # redis編碼型別 預設:'utf-8'
import scrapy class ChoutiSpider(scrapy.Spider): name = "chouti" allowed_domains = ["chouti.com"] start_urls = ( 'http://www.chouti.com/', ) def parse(self, response): for i in range(0,10): yield
作者: 武沛齊
出處: http://www.cnblogs.com/wupeiqi/
本文版權歸作者和部落格園共有,歡迎轉載,但未經作者同意必須保留此段宣告,且在文章頁面明顯位置給出原文連線。
好文要頂 關注我 收藏該文 武沛齊
關注 - 44
粉絲 - 6109 +加關注 0 0 « 上一篇: 白話Scrapy【第一篇】:目錄
» 下一篇: celery
posted @ 2017-05-27 14:36 武沛齊 閱讀( 1923) 評論( 0) 編輯 收藏
scrapy-redis是一個基於redis的scrapy元件,通過它可以快速實現簡單分散式爬蟲程式,該元件本質上提供了三大功能:
- scheduler - 排程器
- dupefilter - URL去重規則(被排程器使用)
- pipeline - 資料持久化
scrapy-redis元件
1. URL去重
?1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
定義去重規則(被排程器呼叫並應用)
a. 內部會使用以下配置進行連線Redis
# REDIS_HOST = 'localhost' # 主機名
# REDIS_PORT = 6379 # 埠
# REDIS_URL = 'redis://user:[email protected]:9001' # 連線URL(優先於以上配置)
# REDIS_PARAMS = {} # Redis連線引數 預設:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
# REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定連線Redis的Python模組 預設:redis.StrictRedis
# REDIS_ENCODING = "utf-8" # redis編碼型別 預設:'utf-8'
b. 去重規則通過redis的集合完成,集合的Key為:
key
=
defaults.DUPEFILTER_KEY
%
{
'timestamp'
:
int
(time.time())}
預設配置:
DUPEFILTER_KEY
=
'dupefilter:%(timestamp)s'
c. 去重規則中將url轉換成唯一標示,然後在redis中檢查是否已經在集合中存在
from
scrapy.utils
import
request
from
scrapy.http
import
Request
req
=
Request(url
=
'http://www.cnblogs.com/wupeiqi.html'
)
result
=
request.request_fingerprint(req)
print
(result)
# 8ea4fd67887449313ccc12e5b6b92510cc53675c
PS:
-
URL引數位置不同時,計算結果一致;
-
預設請求頭不在計算範圍,include_headers可以設定指定請求頭
示例:
from
scrapy.utils
|