10.31 正睿停課訓練 Day13
目錄
2018.10.31 正睿停課訓練 Day13
時間:3.5h
期望得分:100+20+10
實際得分:100+20+10
又是狀態很迷的一天==
A Poker(期望)
容易想到列舉每一對,算它出現在多少種情況中(即\(n/2*(n-2)!\))。
這樣不會算重啊,雖然一個排列會列舉多次,但每次只算的是某一對的貢獻,而不是當前排列的貢獻。
然後優化一下,算每個數小於它的數、小於等於它的數分別有多少個就行了。
//29ms 1156kb #include <cstdio> #include <cctype> #include <algorithm> //#define gc() getchar() #define MAXIN 300000 #define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++) #define mod 1000000007 typedef long long LL; const int N=1e5+5; int A[N]; char IN[MAXIN],*SS=IN,*TT=IN; inline int read() { int now=0;register char c=gc(); for(;!isdigit(c);c=gc()); for(;isdigit(c);now=now*10+c-'0',c=gc()); return now; } int main() { int n=read(); for(int i=1; i<=n; ++i) A[i]=read(); std::sort(A+1,A+1+n), A[n+1]=-1; LL ansA=0; for(int i=1,now=1; i<=n; i=++now) { while(A[now+1]==A[i]) ++now; ansA+=1ll*(now-i+1)*(i-1); } LL fac=1; for(int i=2; i<=n-2; ++i) fac=fac*i%mod; ansA=ansA%mod*fac%mod*(n>>1)%mod; fac=fac*(n-1)%mod*n%mod; printf("%lld %lld\n",ansA,((1ll*fac*(n>>1)-ansA)%mod+mod)%mod); return 0; }
B Label(高斯消元)
(\(w_x\)表示\(x\)的點權,\(len_v\)表示\(x\to v\)的邊權)
假設當前\(w_x\)未知,\(x\)周圍所有點的點權\(w_v\)已知,那麼我們要最小化\[\begin{aligned}\sum_{x\to v}(w_v-w_x)^2\cdot len_v&=\sum_{x\to v}(w_v^2-2w_vw_x+w_x^2)\cdot len_v\\&=\left(\sum len_v\right)w_x^2-\left(\sum-2len_vw_v\right)w_x+\sum len_vw_v^2\end{aligned}\]
\(\sum len_v\neq0\),這就是關於\(w_x\)的二次函式。則當\[w_x=\frac{\sum w_vlen_v}{\sum len_v}\]
時,\(x\)最優(即\(w_x\)取\(v\)的加權平均數)。
於是對每個\(w_x\)未知的\(x\),都可以列出一個方程:把已知的常數項都放到右邊,對未知的\(w_v\),令\(v\)處的係數為\(-len_v\)即可。注意有重邊。
另外,方程組一定有解。(感覺感性理解即可,以下可以忽略。。)
證明:
設當前函式為\(f(x_1,x_2,...,x_i,...,x_n)\)。
因為邊權非負,且\(f\)存在一個有限的取值,所以\(f\)一定有一個最小值。
那麼一定存在一組最小的解,滿足列出的方程。否則可以調整得更小:
考慮一組最小的解\(x_1,x_2,...,x_n\)
設有\(m\)個方程,第\(i\)個方程表示\(x_i\)周圍變數的加權平均。假設有一個方程不滿足加權平均的話,設\(x_i'\)為\(x_i\)周圍變數的加權平均,那麼\(f(x_1,x_2,...,x_i',...,x_n)<f(x_1,x_2,...,x_i,...,x_n)\)(是個二次函式,所以一定存在一個點是最小值),推出矛盾。所以最小解一定滿足所有方程。
同時,方程組的解是唯一的。
證明:
對於一個連通塊,若有一個點的權值確定,那麼解是唯一的。
具體沒看懂。見圖。
//54ms 2440kb
#include <cmath>
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define Sqr(x) (x)*(x)
#define eps 1e-9
typedef long long LL;
const int N=505,M=60005;
int Enum,H[N],nxt[M],to[M],len[M];
double w[N];
bool ok[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
inline void AE(int w,int u,int v)
{
if(u!=v)//自環。。
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, len[Enum]=w,
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, len[Enum]=w;
}
namespace G
{
double A[N][N];
void Gauss(int n)
{
for(int i=1,j=1; i<=n&&j<=n+1; ++j)
{
if(!ok[i]) {++i; continue;}
int mxrow=i;
for(int k=i+1; k<=n; ++k)
if(fabs(A[k][j])>fabs(A[mxrow][j])) mxrow=k;
if(mxrow!=i)// std::swap(A[i],A[mxrow]);//這樣效率低啊
for(int k=j; k<=n+1; ++k) std::swap(A[j][k],A[mxrow][k]);
if(fabs(A[i][j])<eps) continue;
for(int k=i+1; k<=n; ++k)
if(fabs(A[k][j])>eps)
{
double t=A[k][j]/A[i][j];
for(int l=j; l<=n+1; ++l) A[k][l]-=t*A[i][l];
}
++i;
}
for(int i=n; i; --i)
{
if(!ok[i]) continue;
for(int j=i+1; j<=n; ++j) A[i][n+1]-=A[i][j]*w[j];
w[i]=A[i][n+1]/A[i][i];
}
}
}
int main()
{
int n=read(),m=read();
for(int i=1; i<=m; ++i) AE(read(),read(),read());
for(int i=1; i<=n; ++i) w[i]=read();
for(int x=1; x<=n; ++x)
if(w[x]<0)
{
ok[x]=1;
for(int i=H[x],v; i; i=nxt[i])
{
if(w[v=to[i]]<0) G::A[x][v]-=len[i];//可能有重邊
else G::A[x][n+1]+=1.0*w[v]*len[i];
G::A[x][x]+=len[i];
}
}
G::Gauss(n);
double ans=0;
for(int x=1; x<=n; ++x)
for(int i=H[x]; i; i=nxt[i])
ans+=Sqr(w[to[i]]-w[x])*len[i];
printf("%.10lf\n",ans*0.5);
return 0;
}
C Coin
考試程式碼
A(打表)
容易想到答案只與數的相對大小及其數量有關。
首先總分是\(n/2*n!\),如果所有數各不相同則兩人都為\(n/4*n!\)。
否則,用暴力打表發現,一個數每多出現一次,設其總共出現次數為\(x\),則小M的答案減少\(1*c+2*c+...+(x-1)*x\)。
\(c\)是一個關於\(n\)的係數,打表後也能遞推得到。
//39ms 1940kb
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define MAXIN 300000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define mod 1000000007
typedef long long LL;
const int N=1e5+5;
int A[N],fac[N],ifac[N],tm[N],coef[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline int FP(int x,int k)
{
int t=1;
for(; k; k>>=1,x=1ll*x*x%mod)
if(k&1) t=1ll*t*x%mod;
return t;
}
int main()
{
int n=read(),n2=n>>1;
fac[0]=fac[1]=1;
for(int i=2; i<=n; ++i) fac[i]=1ll*fac[i-1]*i%mod;
for(int i=1; i<=n; ++i) A[i]=read();
if(n==2)
{
int ansA=(A[1]>A[2]?1:0)+(A[2]>A[1]?1:0),ansB=(A[1]>=A[2]?1:0)+(A[2]>=A[1]?1:0);
printf("%d %d\n",ansA,ansB);
return 0;
}
std::sort(A+1,A+1+n); A[n+1]=-1;
LL tot=1ll*n2*fac[n]%mod,ansA=tot*FP(2,mod-2)%mod; int cnt=0;
for(int i=2,t=1; i<=n+1; ++i)
if(A[i]!=A[i-1]) tm[++cnt]=t, t=1;
else ++t;
coef[2]=1, coef[4]=4;
for(int i=6; i<=n; i+=2) coef[i]=1ll*coef[i-2]*((1ll*(i-2)*(i-2)+i-4)%mod)%mod;
LL C=1ll*FP(2,mod-2)*coef[n]%mod;
for(int i=1; i<=cnt; ++i)
ansA-=C*(tm[i]-1)%mod*tm[i]%mod;
ansA=(ansA%mod+mod)%mod;
LL ansB=(mod+tot-ansA)%mod;
printf("%d %d\n",(int)ansA,(int)ansB);
return 0;
}
B
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define Sqr(x) (1ll*x*x)
typedef long long LL;
const int N=505,M=60005;
int A[N],B[N],C[N],Enum,H[N],nxt[M],to[M],len[M],dgr[N];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
inline void AE(int w,int u,int v)
{
++dgr[v], to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, len[Enum]=w;
++dgr[u], to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, len[Enum]=w;
}
void DFS(int x,int fa,int dep)
{
B[dep]=A[x];
for(int i=H[x]; i; i=nxt[i])
if(to[i]!=fa) C[dep]=len[i], DFS(to[i],x,dep+1);
}
inline double Check(double x)
{
return 1.0*(x-B[1])*(x-B[1])*C[1]+1.0*(x-B[3])*(x-B[3])*C[2];
}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
int n=read(),m=read(); Enum=1;
for(int i=1; i<=m; ++i) AE(read(),read(),read());
for(int i=1; i<=n; ++i) A[i]=read();
if(n==2)
{
if(A[1]==-1||A[2]==-1) puts("0.0");
else printf("%lld.0\n",1ll*len[2]*Sqr(A[1]-A[2]));
return 0;
}
int rt=1;
for(int i=1; i<=n; ++i) if(dgr[i]==1) {rt=i; break;}
DFS(rt,rt,1);
int cnt=0;
for(int i=1; i<=n; ++i) if(B[i]==-1) ++cnt;
if(cnt>=n-1) return puts("0.0"),0;
if(!cnt)
{
LL ans=0;
for(int i=1; i<n; ++i) ans+=Sqr(B[i+1]-B[i])*C[i];
printf("%lld.0\n",ans);
return 0;
}//cnt=1
if(B[1]==-1) return printf("%lld.0\n",Sqr(B[3]-B[2])*C[2]),0;
if(B[3]==-1) return printf("%lld.0\n",Sqr(B[1]-B[2])*C[1]),0;
double l=std::min(B[1],B[3]),r=std::max(B[1],B[3]),lmid,rmid,ans=1e18;
for(int T=1; T<=100; ++T)//二次函式求最值啊 我還寫個三分==
{
lmid=l+(r-l)/3, rmid=r-(r-l)/3;
double x=Check(lmid),y=Check(rmid);
if(x<y) ans=std::min(ans,x), r=rmid;
else ans=std::min(ans,y), l=lmid;
}
printf("%.10lf\n",ans);
return 0;
}/*
3 2
1 2 3
2 3 1
0 -1 1
*/