1. 程式人生 > >10.23 test1 T1+數論模版

10.23 test1 T1+數論模版

  1. 用 sqrt(n) 來求n的尤拉函式
int phi(int x)
{
	int ret=x,a=x;
	for(int i=2;i<=sqrt(a);i++)
	{
		if(a%i==0)
		{
			ret=ret/i*(i-1);
			while(a%i==0)
			{
				a/=i;
			}
		}
	}
	if(a>1)
	{
		ret=ret/a*(a-1);
	}
	return ret;
}
  1. 用o(n)預處理所有素數
for(int i = 2; i <= n; i ++){
    if(!is[i]){
        prime[++pcnt] = i;
    }
    for(int j = 1; i*prime[j] <= n; j ++){
        is[i*prime[j]] = 1;
        if(i%prime[j] == 0){
            break;
        }
    }
}
  1. o(n)求逆元
inv[1]=1;
for(int i=2;i<=N;i++)
{
	inv[i]=(p-(p/i))*inv[p%i]%p;
}
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cstdlib>
using namespace std;
typedef long long ll;
ll p;
ll phi(ll x)
{
	ll ret=x,a=x;
	for(ll i=2;i*i<=a;i++)
	{
		if(a%i==0)
		{
			ret=ret/i*(i-1);
			while(a%i==0) a/=i;
		}
	}
	if(a>1) ret=ret/a*(a-1);
	return ret;
}
int main()
{
//	freopen("count.in","r",stdin);
//	freopen("count.out","w",stdout);
	cin>>p;
	ll ans=0;
	if(p==1)
	{
		ans=0;
	}
	else
	{
		ll s,t;
		s=phi(p);
		t=0;
		for(ll i=1;i<p;i++)
		{
			if(i*i%p==1)
			{
				t++;
			}
		}
		ans=(s+t)/2;
	}
	cout<<ans<<endl;
	return 0;
}