1. 程式人生 > >Kafaka詳細介紹機制原理

Kafaka詳細介紹機制原理

1.       kafka介紹

 

1.1.       主要功能

根據官網的介紹,ApacheKafka®是一個分散式流媒體平臺,它主要有3種功能:

  1:It lets you publish and subscribe to streams of records.釋出和訂閱訊息流,這個功能類似於訊息佇列,這也是kafka歸類為訊息佇列框架的原因

  2:It lets you store streams of records in a fault-tolerant way.以容錯的方式記錄訊息流,kafka以檔案的方式來儲存訊息流

  3:It lets you process streams of records as they occur.可以再訊息釋出的時候進行處理

 

 

1.2.       使用場景

1:Building real-time streaming data pipelines that reliably get data between systems or applications.在系統或應用程式之間構建可靠的用於傳輸實時資料的管道,訊息佇列功能

2:Building real-time streaming applications that transform or react to the streams of data。構建實時的流資料處理程式來變換或處理資料流,資料處理功能

 

1.3.       詳細介紹

Kafka目前主要作為一個分散式的釋出訂閱式的訊息系統使用,下面簡單介紹一下kafka的基本機制

  1.3.1 訊息傳輸流程

 

    Producer即生產者,向Kafka叢集傳送訊息,在傳送訊息之前,會對訊息進行分類,即Topic,上圖展示了兩個producer傳送了分類為topic1的訊息,另外一個傳送了topic2的訊息。

    Topic即主題,通過對訊息指定主題可以將訊息分類,消費者可以只關注自己需要的Topic中的訊息

    Consumer

即消費者,消費者通過與kafka叢集建立長連線的方式,不斷地從叢集中拉取訊息,然後可以對這些訊息進行處理。

    從上圖中就可以看出同一個Topic下的消費者和生產者的數量並不是對應的。

  1.3.2 kafka伺服器訊息儲存策略

 

    談到kafka的儲存,就不得不提到分割槽,即partitions,建立一個topic時,同時可以指定分割槽數目,分割槽數越多,其吞吐量也越大,但是需要的資源也越多,同時也會導致更高的不可用性,kafka在接收到生產者傳送的訊息之後,會根據均衡策略將訊息儲存到不同的分割槽中。

 

  在每個分割槽中,訊息以順序儲存,最晚接收的的訊息會最後被消費。

  1.3.3 與生產者的互動

 

    生產者在向kafka叢集傳送訊息的時候,可以通過指定分割槽來發送到指定的分割槽中

    也可以通過指定均衡策略來將訊息傳送到不同的分割槽中

    如果不指定,就會採用預設的隨機均衡策略,將訊息隨機的儲存到不同的分割槽中

  1.3.4  與消費者的互動

  

    在消費者消費訊息時,kafka使用offset來記錄當前消費的位置

    在kafka的設計中,可以有多個不同的group來同時消費同一個topic下的訊息,如圖,我們有兩個不同的group同時消費,他們的的消費的記錄位置offset各不專案,不互相干擾。

    對於一個group而言,消費者的數量不應該多餘分割槽的數量,因為在一個group中,每個分割槽至多隻能繫結到一個消費者上,即一個消費者可以消費多個分割槽,一個分割槽只能給一個消費者消費

    因此,若一個group中的消費者數量大於分割槽數量的話,多餘的消費者將不會收到任何訊息。

2.       Kafka安裝與使用

 

2.1.       下載

  你可以在kafka官網 http://kafka.apache.org/downloads下載到最新的kafka安裝包,選擇下載二進位制版本的tgz檔案,根據網路狀態可能需要fq,這裡我們選擇的版本是0.11.0.1,目前的最新版

 

2.2.       安裝

  Kafka是使用scala編寫的執行與jvm虛擬機器上的程式,雖然也可以在windows上使用,但是kafka基本上是執行在linux伺服器上,因此我們這裡也使用linux來開始今天的實戰。

  首先確保你的機器上安裝了jdk,kafka需要java執行環境,以前的kafka還需要zookeeper,新版的kafka已經內建了一個zookeeper環境,所以我們可以直接使用

  說是安裝,如果只需要進行最簡單的嘗試的話我們只需要解壓到任意目錄即可,這裡我們將kafka壓縮包解壓到/home目錄

 

2.3.       配置

  在kafka解壓目錄下下有一個config的資料夾,裡面放置的是我們的配置檔案

  consumer.properites 消費者配置,這個配置檔案用於配置於2.5節中開啟的消費者,此處我們使用預設的即可

  producer.properties 生產者配置,這個配置檔案用於配置於2.5節中開啟的生產者,此處我們使用預設的即可

  server.properties kafka伺服器的配置,此配置檔案用來配置kafka伺服器,目前僅介紹幾個最基礎的配置

    1. broker.id 申明當前kafka伺服器在叢集中的唯一ID,需配置為integer,並且叢集中的每一個kafka伺服器的id都應是唯一的,我們這裡採用預設配置即可
    2. listeners 申明此kafka伺服器需要監聽的埠號,如果是在本機上跑虛擬機器執行可以不用配置本項,預設會使用localhost的地址,如果是在遠端伺服器上執行則必須配置,例如:

          listeners=PLAINTEXT:// 192.168.180.128:9092。並確保伺服器的9092埠能夠訪問

      3.zookeeper.connect 申明kafka所連線的zookeeper的地址 ,需配置為zookeeper的地址,由於本次使用的是kafka高版本中自帶zookeeper,使用預設配置即可

          zookeeper.connect=localhost:2181

2.4.       執行

  1. 啟動zookeeper

cd進入kafka解壓目錄,輸入

bin/zookeeper-server-start.sh config/zookeeper.properties

啟動zookeeper成功後會看到如下的輸出

    2.啟動kafka

cd進入kafka解壓目錄,輸入

bin/kafka-server-start.sh config/server.properties

啟動kafka成功後會看到如下的輸出

 

2.5.       第一個訊息

   2.5.1   建立一個topic

    Kafka通過topic對同一類的資料進行管理,同一類的資料使用同一個topic可以在處理資料時更加的便捷

    在kafka解壓目錄開啟終端,輸入

    bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test

    建立一個名為test的topic

 

         在建立topic後可以通過輸入

            bin/kafka-topics.sh --list --zookeeper localhost:2181

   來檢視已經建立的topic

  2.4.2   建立一個訊息消費者

   在kafka解壓目錄開啟終端,輸入

    bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning

   可以建立一個用於消費topic為test的消費者

 

 

         消費者建立完成之後,因為還沒有傳送任何資料,因此這裡在執行後沒有打印出任何資料

         不過彆著急,不要關閉這個終端,開啟一個新的終端,接下來我們建立第一個訊息生產者

  2.4.3         建立一個訊息生產者

    在kafka解壓目錄開啟一個新的終端,輸入

    bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test

    在執行完畢後會進入的編輯器頁面

 

在傳送完訊息之後,可以回到我們的訊息消費者終端中,可以看到,終端中已經打印出了我們剛才傳送的訊息

 

3.       使用java程式

    跟上節中一樣,我們現在在java程式中嘗試使用kafka

    3.1  建立Topic

public static void main(String[] args) {
    //建立topic
    Properties props = new Properties();
    props.put("bootstrap.servers", "192.168.180.128:9092");
    AdminClient adminClient = AdminClient.create(props);
    ArrayList<NewTopic> topics = new ArrayList<NewTopic>();
    NewTopic newTopic = new NewTopic("topic-test", 1, (short) 1);
    topics.add(newTopic);
    CreateTopicsResult result = adminClient.createTopics(topics);
    try {
        result.all().get();
    } catch (InterruptedException e) {
        e.printStackTrace();
    } catch (ExecutionException e) {
        e.printStackTrace();
    }
}

  使用AdminClient API可以來控制對kafka伺服器進行配置,我們這裡使用NewTopic(String name, int numPartitions, short   replicationFactor)的構造方法來建立了一個名為“topic-test”,分割槽數為1,複製因子為1的Topic.

3.2  Producer生產者傳送訊息

public static void main(String[] args){
    Properties props = new Properties();
    props.put("bootstrap.servers", "192.168.180.128:9092");
    props.put("acks", "all");
    props.put("retries", 0);
    props.put("batch.size", 16384);
    props.put("linger.ms", 1);
    props.put("buffer.memory", 33554432);
    props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
    props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

    Producer<String, String> producer = new KafkaProducer<String, String>(props);
    for (int i = 0; i < 100; i++)
        producer.send(new ProducerRecord<String, String>("topic-test", Integer.toString(i), Integer.toString(i)));

    producer.close();

}

使用producer傳送完訊息可以通過2.5中提到的伺服器端消費者監聽到訊息。也可以使用接下來介紹的java消費者程式來消費訊息

3.3 Consumer消費者消費訊息

public static void main(String[] args){
    Properties props = new Properties();
    props.put("bootstrap.servers", "192.168.12.65:9092");
    props.put("group.id", "test");
    props.put("enable.auto.commit", "true");
    props.put("auto.commit.interval.ms", "1000");
    props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
    props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
    final KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(props);
    consumer.subscribe(Arrays.asList("topic-test"),new ConsumerRebalanceListener() {
        public void onPartitionsRevoked(Collection<TopicPartition> collection) {
        }
        public void onPartitionsAssigned(Collection<TopicPartition> collection) {
            //將偏移設定到最開始
            consumer.seekToBeginning(collection);
        }
    });
    while (true) {
        ConsumerRecords<String, String> records = consumer.poll(100);
        for (ConsumerRecord<String, String> record : records)
            System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
    }
}

這裡我們使用Consume API 來建立了一個普通的java消費者程式來監聽名為“topic-test”的Topic,每當有生產者向kafka伺服器傳送訊息,我們的消費者就能收到傳送的訊息。

4.       使用spring-kafka

Spring-kafka是正處於孵化階段的一個spring子專案,能夠使用spring的特性來讓我們更方便的使用kafka

4.1   基本配置資訊

與其他spring的專案一樣,總是離不開配置,這裡我們使用java配置來配置我們的kafka消費者和生產者。

  1. 引入pom檔案

<!--kafka start-->
<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
    <version>0.11.0.1</version>
</dependency>
<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-streams</artifactId>
    <version>0.11.0.1</version>
</dependency>
<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
    <version>1.3.0.RELEASE</version>
</dependency>

  1. 建立配置類

我們在主目錄下新建名為KafkaConfig的類

@Configuration
@EnableKafka
public class KafkaConfig {

}

  1. 配置Topic

在kafkaConfig類中新增配置

//topic config Topic的配置開始
    @Bean
    public KafkaAdmin admin() {
        Map<String, Object> configs = new HashMap<String, Object>();
        configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.180.128:9092");
        return new KafkaAdmin(configs);
    }

    @Bean
    public NewTopic topic1() {
        return new NewTopic("foo", 10, (short) 2);
    }
//topic的配置結束

 

  1. 配置生產者Factort及Template

//producer config start
    @Bean
    public ProducerFactory<Integer, String> producerFactory() {
        return new DefaultKafkaProducerFactory<Integer,String>(producerConfigs());
    }
    @Bean
    public Map<String, Object> producerConfigs() {
        Map<String, Object> props = new HashMap<String,Object>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.180.128:9092");
        props.put("acks", "all");
        props.put("retries", 0);
        props.put("batch.size", 16384);
        props.put("linger.ms", 1);
        props.put("buffer.memory", 33554432);
        props.put("key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        return props;
    }
    @Bean
    public KafkaTemplate<Integer, String> kafkaTemplate() {
        return new KafkaTemplate<Integer, String>(producerFactory());
    }
//producer config end

5.配置ConsumerFactory

//consumer config start
    @Bean
    public ConcurrentKafkaListenerContainerFactory<Integer,String> kafkaListenerContainerFactory(){
        ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<Integer, String>();
        factory.setConsumerFactory(consumerFactory());
        return factory;
    }

    @Bean
    public ConsumerFactory<Integer,String> consumerFactory(){
        return new DefaultKafkaConsumerFactory<Integer, String>(consumerConfigs());
    }


    @Bean
    public Map<String,Object> consumerConfigs(){
        HashMap<String, Object> props = new HashMap<String, Object>();
        props.put("bootstrap.servers", "192.168.180.128:9092");
        props.put("group.id", "test");
        props.put("enable.auto.commit", "true");
        props.put("auto.commit.interval.ms", "1000");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.IntegerDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        return props;
    }
//consumer config end

 

 

4.2  建立訊息生產者

//使用spring-kafka的template傳送一條訊息 傳送多條訊息只需要迴圈多次即可
public static void main(String[] args) throws ExecutionException, InterruptedException {
    AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext(KafkaConfig.class);
    KafkaTemplate<Integer, String> kafkaTemplate = (KafkaTemplate<Integer, String>) ctx.getBean("kafkaTemplate");
        String data="this is a test message";
        ListenableFuture<SendResult<Integer, String>> send = kafkaTemplate.send("topic-test", 1, data);
        send.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {
            public void onFailure(Throwable throwable) {

            }

            public void onSuccess(SendResult<Integer, String> integerStringSendResult) {

            }
        });
}

 

4.3    建立訊息消費者

我們首先建立一個一個用於訊息監聽的類,當名為”topic-test”的topic接收到訊息之後,我們的這個listen方法就會呼叫。

public class SimpleConsumerListener {
    private final static Logger logger = LoggerFactory.getLogger(SimpleConsumerListener.class);
    private final CountDownLatch latch1 = new CountDownLatch(1);

    @KafkaListener(id = "foo", topics = "topic-test")
    public void listen(byte[] records) {
        //do something here
        this.latch1.countDown();
    }
}

         我們同時也需要將這個類作為一個Bean配置到KafkaConfig中

@Bean
public SimpleConsumerListener simpleConsumerListener(){
    return new SimpleConsumerListener();
}

預設spring-kafka會為每一個監聽方法建立一個執行緒來向kafka伺服器拉取訊息