Spark筆記之累加器(Accumulator)
一、累加器簡介
在Spark中如果想在Task計算的時候統計某些事件的數量,使用filter/reduce也可以,但是使用累加器是一種更方便的方式,累加器一個比較經典的應用場景是用來在Spark Streaming應用中記錄某些事件的數量。
使用累加器時需要註意只有Driver能夠取到累加器的值,Task端進行的是累加操作。
創建的Accumulator變量的值能夠在Spark Web UI上看到,在創建時應該盡量為其命名,下面探討如何在Spark Web UI上查看累加器的值。
示例代碼:
package cc11001100.spark.sharedVariables.accumulators; import org.apache.spark.api.java.function.ForeachFunction; import org.apache.spark.sql.Encoders; import org.apache.spark.sql.SparkSession; import org.apache.spark.util.LongAccumulator; import java.util.Collections; import java.util.concurrent.TimeUnit; /** * @author CC11001100 */ public class SparkWebUIShowAccumulatorDemo { public static void main(String[] args) { SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate(); LongAccumulator fooCount = spark.sparkContext().longAccumulator("fooCount"); spark.createDataset(Collections.singletonList(1024), Encoders.INT()) .foreach((ForeachFunction<Integer>) fooCount::add); try { TimeUnit.DAYS.sleep(365 * 10000); } catch (InterruptedException e) { e.printStackTrace(); } } }
啟動的時候註意觀察控制臺上輸出的Spark Web UI的地址:
打開此鏈接,點進去Jobs-->Stage,可以看到fooCount累加器的值已經被累加到了1024:
二、Accumulator的簡單使用
Spark內置了三種類型的Accumulator,分別是LongAccumulator用來累加整數型,DoubleAccumulator用來累加浮點型,CollectionAccumulator用來累加集合元素。
package cc11001100.spark.sharedVariables.accumulators; import org.apache.spark.SparkContext; import org.apache.spark.api.java.function.MapFunction; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Encoders; import org.apache.spark.sql.SparkSession; import org.apache.spark.util.CollectionAccumulator; import org.apache.spark.util.DoubleAccumulator; import org.apache.spark.util.LongAccumulator; import java.util.Arrays; /** * 累加器的基本使用 * * @author CC11001100 */ public class AccumulatorsSimpleUseDemo { public static void main(String[] args) { SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate(); SparkContext sc = spark.sparkContext(); // 內置的累加器有三種,LongAccumulator、LongAccumulator、CollectionAccumulator // LongAccumulator: 數值型累加 LongAccumulator longAccumulator = sc.longAccumulator("long-account"); // DoubleAccumulator: 小數型累加 DoubleAccumulator doubleAccumulator = sc.doubleAccumulator("double-account"); // CollectionAccumulator:集合累加 CollectionAccumulator<Integer> collectionAccumulator = sc.collectionAccumulator("double-account"); Dataset<Integer> num1 = spark.createDataset(Arrays.asList(1, 2, 3), Encoders.INT()); Dataset<Integer> num2 = num1.map((MapFunction<Integer, Integer>) x -> { longAccumulator.add(x); doubleAccumulator.add(x); collectionAccumulator.add(x); return x; }, Encoders.INT()).cache(); num2.count(); System.out.println("longAccumulator: " + longAccumulator.value()); System.out.println("doubleAccumulator: " + doubleAccumulator.value()); // 註意,集合中元素的順序是無法保證的,多運行幾次發現每次元素的順序都可能會變化 System.out.println("collectionAccumulator: " + collectionAccumulator.value()); } }
三、自定義Accumulator
當內置的Accumulator無法滿足要求時,可以繼承AccumulatorV2實現自定義的累加器。
實現自定義累加器的步驟:
1. 繼承AccumulatorV2,實現相關方法
2. 創建自定義Accumulator的實例,然後在SparkContext上註冊它
假設要累加的數非常大,內置的LongAccumulator已經無法滿足需求,下面是一個簡單的例子用來累加BigInteger:
package cc11001100.spark.sharedVariables.accumulators; import org.apache.spark.SparkContext; import org.apache.spark.api.java.function.MapFunction; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Encoders; import org.apache.spark.sql.SparkSession; import org.apache.spark.util.AccumulatorV2; import java.math.BigInteger; import java.util.Arrays; import java.util.List; /** * 自定義累加器 * * @author CC11001100 */ public class CustomAccumulatorDemo { // 需要註意的是累加操作不能依賴順序,比如類似於StringAccumulator這種則會得到錯誤的結果 public static class BigIntegerAccumulator extends AccumulatorV2<BigInteger, BigInteger> { private BigInteger num = BigInteger.ZERO; public BigIntegerAccumulator() { } public BigIntegerAccumulator(BigInteger num) { this.num = new BigInteger(num.toString()); } @Override public boolean isZero() { return num.compareTo(BigInteger.ZERO) == 0; } @Override public AccumulatorV2<BigInteger, BigInteger> copy() { return new BigIntegerAccumulator(num); } @Override public void reset() { num = BigInteger.ZERO; } @Override public void add(BigInteger num) { this.num = this.num.add(num); } @Override public void merge(AccumulatorV2<BigInteger, BigInteger> other) { num = num.add(other.value()); } @Override public BigInteger value() { return num; } } public static void main(String[] args) { SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate(); SparkContext sc = spark.sparkContext(); // 直接new自定義的累加器 BigIntegerAccumulator bigIntegerAccumulator = new BigIntegerAccumulator(); // 然後在SparkContext上註冊一下 sc.register(bigIntegerAccumulator, "bigIntegerAccumulator"); List<BigInteger> numList = Arrays.asList(new BigInteger("9999999999999999999999"), new BigInteger("9999999999999999999999"), new BigInteger("9999999999999999999999")); Dataset<BigInteger> num = spark.createDataset(numList, Encoders.kryo(BigInteger.class)); Dataset<BigInteger> num2 = num.map((MapFunction<BigInteger, BigInteger>) x -> { bigIntegerAccumulator.add(x); return x; }, Encoders.kryo(BigInteger.class)); num2.count(); System.out.println("bigIntegerAccumulator: " + bigIntegerAccumulator.value()); } }
思考:內置的累加器LongAccumulator、DoubleAccumulator、CollectionAccumulator和我上面的自定義BigIntegerAccumulator,它們都有一個共同的特點,就是最終的結果不受累加數據順序的影響(對於CollectionAccumulator來說,可以簡單的將結果集看做是一個無序Set),看到網上有博主舉例子StringAccumulator,這個就是一個錯誤的例子,就相當於開了一百個線程,每個線程隨機sleep若幹毫秒然後往StringBuilder中追加字符,最後追加出來的字符串是無法被預測的。總結一下就是累加器的最終結果應該不受累加順序的影響,否則就要重新審視一下這個累加器的設計是否合理。
四、使用Accumulator的陷阱
來討論一下使用累加器的一些陷阱,累加器的累加是在Task中進行的,而這些Task就是我們在Dataset上調用的一些算子操作,這些算子操作有Transform的,也有Action的,來探討一下不同類型的算子對Accumulator有什麽影響。
package cc11001100.spark.sharedVariables.accumulators; import org.apache.spark.SparkContext; import org.apache.spark.api.java.function.MapFunction; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Encoders; import org.apache.spark.sql.SparkSession; import org.apache.spark.util.LongAccumulator; import java.util.Arrays; /** * 累加器使用的陷阱 * * @author CC11001100 */ public class AccumulatorTrapDemo { public static void main(String[] args) { SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate(); SparkContext sc = spark.sparkContext(); LongAccumulator longAccumulator = sc.longAccumulator("long-account"); // ------------------------------- 在transform算子中的錯誤使用 ------------------------------------------- Dataset<Integer> num1 = spark.createDataset(Arrays.asList(1, 2, 3), Encoders.INT()); Dataset<Integer> nums2 = num1.map((MapFunction<Integer, Integer>) x -> { longAccumulator.add(1); return x; }, Encoders.INT()); // 因為沒有Action操作,nums.map並沒有被執行,因此此時廣播變量的值還是0 System.out.println("num2 1: " + longAccumulator.value()); // 0 // 調用一次action操作,num.map得到執行,廣播變量被改變 nums2.count(); System.out.println("num2 2: " + longAccumulator.value()); // 3 // 又調用了一次Action操作,廣播變量所在的map又被執行了一次,所以累加器又被累加了一遍,就悲劇了 nums2.count(); System.out.println("num2 3: " + longAccumulator.value()); // 6 // ------------------------------- 在transform算子中的正確使用 ------------------------------------------- // 累加器不應該被重復使用,或者在合適的時候進行cache斷開與之前Dataset的血緣關系,因為cache了就不必重復計算了 longAccumulator.setValue(0); Dataset<Integer> nums3 = num1.map((MapFunction<Integer, Integer>) x -> { longAccumulator.add(1); return x; }, Encoders.INT()).cache(); // 註意這個地方進行了cache // 因為沒有Action操作,nums.map並沒有被執行,因此此時廣播變量的值還是0 System.out.println("num3 1: " + longAccumulator.value()); // 0 // 調用一次action操作,廣播變量被改變 nums3.count(); System.out.println("num3 2: " + longAccumulator.value()); // 3 // 又調用了一次Action操作,因為前一次調用count時num3已經被cache,num2.map不會被再執行一遍,所以這裏的值還是3 nums3.count(); System.out.println("num3 3: " + longAccumulator.value()); // 3 // ------------------------------- 在action算子中的使用 ------------------------------------------- longAccumulator.setValue(0); num1.foreach(x -> { longAccumulator.add(1); }); // 因為是Action操作,會被立即執行所以打印的結果是符合預期的 System.out.println("num4: " + longAccumulator.value()); // 3 } }
五、Accumulator使用的奇淫技巧
累加器並不是只能用來實現加法,也可以用來實現減法,直接把要累加的數值改成負數就可以了:
package cc11001100.spark.sharedVariables.accumulators; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Encoders; import org.apache.spark.sql.SparkSession; import org.apache.spark.util.LongAccumulator; import java.util.Arrays; /** * 使用累加器實現減法 * * @author CC11001100 */ public class AccumulatorSubtraction { public static void main(String[] args) { SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate(); Dataset<Integer> nums = spark.createDataset(Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8), Encoders.INT()); LongAccumulator longAccumulator = spark.sparkContext().longAccumulator("AccumulatorSubtraction"); nums.foreach(x -> { if (x % 3 == 0) { longAccumulator.add(-2); } else { longAccumulator.add(1); } }); System.out.println("longAccumulator: " + longAccumulator.value()); // 2 } }
相關資料:
1. Accumulators
2. When are accumulators truly reliable?
.
Spark筆記之累加器(Accumulator)