關於tensorflow裡面的tf.contrib.rnn.BasicLSTMCell 中num_units引數問題
阿新 • • 發佈:2018-11-03
這裡的num_units引數並不是指這一層油多少個相互獨立的時序lstm,而是lstm單元內部的幾個門的引數,這幾個門其實內部是一個神經網路,答案來自知乎:
class TRNNConfig(object): """RNN配置引數""" # 模型引數 embedding_dim = 100 # 詞向量維度 seq_length = 100 # 序列長度 num_classes = 2 # 類別數 vocab_size = 10000 # 詞彙表達小num_layers= 2 # 隱藏層層數 hidden_dim = 128 # 隱藏層神經元 rnn = 'lstm' # lstm 或 gru dropout_keep_prob = 0.8 # dropout保留比例 learning_rate = 1e-3 # 學習率 batch_size = 128 # 每批訓練大小 num_epochs = 5 # 總迭代輪次 print_per_batch = 20 # 每多少輪輸出一次結果save_per_batch = 10 # 每多少輪存入tensorboard class TextRNN(object): """文字分類,RNN模型""" def __init__(self, config): self.config = config # 三個待輸入的資料 self.input_x = tf.placeholder(tf.int32, [None, self.config.seq_length], name='input_x') self.input_y = tf.placeholder(tf.float32, [None, self.config.num_classes], name='input_y') self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') self.rnn() def rnn(self): """rnn模型""" def lstm_cell(): # lstm核 return tf.contrib.rnn.BasicLSTMCell(self.config.hidden_dim, state_is_tuple=True) def gru_cell(): # gru核 return tf.contrib.rnn.GRUCell(self.config.hidden_dim) def dropout(): # 為每一個rnn核後面加一個dropout層 if (self.config.rnn == 'lstm'): cell = lstm_cell() else: cell = gru_cell() return tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=self.keep_prob) # 詞向量對映 with tf.device('/cpu:0'): embedding = tf.get_variable('embedding', [self.config.vocab_size, self.config.embedding_dim]) embedding_inputs = tf.nn.embedding_lookup(embedding, self.input_x) with tf.name_scope("rnn"): # 多層rnn網路 cells = [dropout() for _ in range(self.config.num_layers)] rnn_cell = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True) _outputs, _ = tf.nn.dynamic_rnn(cell=rnn_cell, inputs=embedding_inputs, dtype=tf.float32) last = _outputs[:, -1, :] # 取最後一個時序輸出作為結果 # last = _outputs # 取最後一個時序輸出作為結果 with tf.name_scope("score"): # 全連線層,後面接dropout以及relu啟用 fc = tf.layers.dense(last, self.config.hidden_dim, name='fc1') fc = tf.contrib.layers.dropout(fc, self.keep_prob) fc = tf.nn.relu(fc) # 分類器 self.logits = tf.layers.dense(fc, self.config.num_classes, name='fc2') self.y_pred_cls = tf.argmax(tf.nn.softmax(self.logits), 1) # 預測類別 with tf.name_scope("optimize"): # 損失函式,交叉熵 cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.input_y) self.loss = tf.reduce_mean(cross_entropy) # 優化器 self.optim = tf.train.AdamOptimizer(learning_rate=self.config.learning_rate).minimize(self.loss) with tf.name_scope("accuracy"): # 準確率 correct_pred = tf.equal(tf.argmax(self.input_y, 1), self.y_pred_cls) self.acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32))