python 單目視覺測距
阿新 • • 發佈:2018-11-05
# import the necessary packages
import numpy as np
import cv2
import sys
reload(sys)
sys.setdefaultencoding('utf8')
cap = cv2.VideoCapture(0)
cap.set(3,640)
cap.set(4,480)
cap.set(1, 10.0)
def find_marker(image):
# convert the image to grayscale, blur it, and detect edges
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 35, 125)
# find the contours in the edged image and keep the largest one;
# we'll assume that this is our piece of paper in the image
(cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
c = max(cnts, key = cv2.contourArea)
# compute the bounding box of the of the paper region and return it
return cv2.minAreaRect(c)
def distance_to_camera(knownWidth, focalLength, perWidth):
# compute and return the distance from the maker to the camera
return (knownWidth * focalLength) / perWidth
# initialize the known distance from the camera to the object, which
# in this case is 24 inches
KNOWN_DISTANCE = 24.0
# initialize the known object width, which in this case, the piece of
# paper is 11 inches wide
KNOWN_WIDTH = 11.0
# initialize the list of images that we'll be using
IMAGE_PATHS = ["111.png"]
# load the furst image that contains an object that is KNOWN TO BE 2 feet
# from our camera, then find the paper marker in the image, and initialize
# the focal length
# loop over the images
while True:
ret,frame = cap.read()
if ret == True:
frame = cv2.flip(frame, 1)
#a = out.write(frame)
#cv2.imshow("frame", frame)
#image = cv2.imread(IMAGE_PATHS[0])
image=frame
marker = find_marker(frame)
focalLength = (marker[1][0] * KNOWN_DISTANCE) / KNOWN_WIDTH
# load the image, find the marker in the image, then compute the
# distance to the marker from the camera
#image = cv2.imread(imagePath)
marker = find_marker(frame)
inches = distance_to_camera(KNOWN_WIDTH, focalLength, marker[1][0])
dis=(inches / 12)*0.3048
print dis
# draw a bounding box around the image and display it
box = np.int0(cv2.cv.BoxPoints(marker))
cv2.drawContours(image, [box], -1, (0, 255, 0), 2)
cv2.putText(image, "%.2f m" % float(dis),
(image.shape[1] - 250, image.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX,
2.0, (0, 255, 0), 3)
cv2.imshow("image", image)
#cv2.imwrite('111_test.jpg',image)
#cv2.waitKey(0)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
cap.release()
#out.release()
cv2.destroyAllWindows()
import numpy as np
import cv2
import sys
reload(sys)
sys.setdefaultencoding('utf8')
cap = cv2.VideoCapture(0)
cap.set(3,640)
cap.set(4,480)
cap.set(1, 10.0)
def find_marker(image):
# convert the image to grayscale, blur it, and detect edges
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 35, 125)
# find the contours in the edged image and keep the largest one;
# we'll assume that this is our piece of paper in the image
(cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
c = max(cnts, key = cv2.contourArea)
# compute the bounding box of the of the paper region and return it
return cv2.minAreaRect(c)
def distance_to_camera(knownWidth, focalLength, perWidth):
# compute and return the distance from the maker to the camera
return (knownWidth * focalLength) / perWidth
# initialize the known distance from the camera to the object, which
# in this case is 24 inches
KNOWN_DISTANCE = 24.0
# initialize the known object width, which in this case, the piece of
# paper is 11 inches wide
KNOWN_WIDTH = 11.0
# initialize the list of images that we'll be using
IMAGE_PATHS = ["111.png"]
# load the furst image that contains an object that is KNOWN TO BE 2 feet
# from our camera, then find the paper marker in the image, and initialize
# the focal length
# loop over the images
while True:
ret,frame = cap.read()
if ret == True:
frame = cv2.flip(frame, 1)
#a = out.write(frame)
#cv2.imshow("frame", frame)
#image = cv2.imread(IMAGE_PATHS[0])
image=frame
marker = find_marker(frame)
focalLength = (marker[1][0] * KNOWN_DISTANCE) / KNOWN_WIDTH
# load the image, find the marker in the image, then compute the
# distance to the marker from the camera
#image = cv2.imread(imagePath)
marker = find_marker(frame)
inches = distance_to_camera(KNOWN_WIDTH, focalLength, marker[1][0])
dis=(inches / 12)*0.3048
print dis
# draw a bounding box around the image and display it
box = np.int0(cv2.cv.BoxPoints(marker))
cv2.drawContours(image, [box], -1, (0, 255, 0), 2)
cv2.putText(image, "%.2f m" % float(dis),
(image.shape[1] - 250, image.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX,
2.0, (0, 255, 0), 3)
cv2.imshow("image", image)
#cv2.imwrite('111_test.jpg',image)
#cv2.waitKey(0)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
cap.release()
#out.release()
cv2.destroyAllWindows()