1. 程式人生 > >第六次作業--鳶尾花

第六次作業--鳶尾花

from sklearn.datasets import load_iris
import numpy as np
import sklearn#從sklearn包自帶的資料集中讀出鳶尾花資料集data
iris =load_iris()
iris.keys()

dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])

type(iris)#檢視iris的型別

sklearn.utils.Bunch

data=iris['data']
data#取出鳶尾花特徵和鳶尾花類別資料,檢視其形狀及資料型別
Out[5]:
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5. , 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       [4.8, 3. , 1.4, 0.1],
       [4.3, 3. , 1.1, 0.1],
       [5.8, 4. , 1.2, 0.2],
       [5.7, 4.4, 1.5, 0.4],
       [5.4, 3.9, 1.3, 0.4],
       [5.1, 3.5, 1.4, 0.3],
       [5.7, 3.8, 1.7, 0.3],
       [5.1, 3.8, 1.5, 0.3],
       [5.4, 3.4, 1.7, 0.2],
       [5.1, 3.7, 1.5, 0.4],
       [4.6, 3.6, 1. , 0.2],
       [5.1, 3.3, 1.7, 0.5],
       [4.8, 3.4, 1.9, 0.2],
       [5. , 3. , 1.6, 0.2],
       [5. , 3.4, 1.6, 0.4],
       [5.2, 3.5, 1.5, 0.2],
       [5.2, 3.4, 1.4, 0.2],
       [4.7, 3.2, 1.6, 0.2],
       [4.8, 3.1, 1.6, 0.2],
       [5.4, 3.4, 1.5, 0.4],
       [5.2, 4.1, 1.5, 0.1],
       [5.5, 4.2, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5. , 3.2, 1.2, 0.2],
       [5.5, 3.5, 1.3, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [4.4, 3. , 1.3, 0.2],
       [5.1, 3.4, 1.5, 0.2],
       [5. , 3.5, 1.3, 0.3],
       [4.5, 2.3, 1.3, 0.3],
       [4.4, 3.2, 1.3, 0.2],
       [5. , 3.5, 1.6, 0.6],
       [5.1, 3.8, 1.9, 0.4],
       [4.8, 3. , 1.4, 0.3],
       [5.1, 3.8, 1.6, 0.2],
       [4.6, 3.2, 1.4, 0.2],
       [5.3, 3.7, 1.5, 0.2],
       [5. , 3.3, 1.4, 0.2],
       [7. , 3.2, 4.7, 1.4],
       [6.4, 3.2, 4.5, 1.5],
       [6.9, 3.1, 4.9, 1.5],
       [5.5, 2.3, 4. , 1.3],
       [6.5, 2.8, 4.6, 1.5],
       [5.7, 2.8, 4.5, 1.3],
       [6.3, 3.3, 4.7, 1.6],
       [4.9, 2.4, 3.3, 1. ],
       [6.6, 2.9, 4.6, 1.3],
       [5.2, 2.7, 3.9, 1.4],
       [5. , 2. , 3.5, 1. ],
       [5.9, 3. , 4.2, 1.5],
       [6. , 2.2, 4. , 1. ],
       [6.1, 2.9, 4.7, 1.4],
       [5.6, 2.9, 3.6, 1.3],
       [6.7, 3.1, 4.4, 1.4],
       [5.6, 3. , 4.5, 1.5],
       [5.8, 2.7, 4.1, 1. ],
       [6.2, 2.2, 4.5, 1.5],
       [5.6, 2.5, 3.9, 1.1],
       [5.9, 3.2, 4.8, 1.8],
       [6.1, 2.8, 4. , 1.3],
       [6.3, 2.5, 4.9, 1.5],
       [6.1, 2.8, 4.7, 1.2],
       [6.4, 2.9, 4.3, 1.3],
       [6.6, 3. , 4.4, 1.4],
       [6.8, 2.8, 4.8, 1.4],
       [6.7, 3. , 5. , 1.7],
       [6. , 2.9, 4.5, 1.5],
       [5.7, 2.6, 3.5, 1. ],
       [5.5, 2.4, 3.8, 1.1],
       [5.5, 2.4, 3.7, 1. ],
       [5.8, 2.7, 3.9, 1.2],
       [6. , 2.7, 5.1, 1.6],
       [5.4, 3. , 4.5, 1.5],
       [6. , 3.4, 4.5, 1.6],
       [6.7, 3.1, 4.7, 1.5],
       [6.3, 2.3, 4.4, 1.3],
       [5.6, 3. , 4.1, 1.3],
       [5.5, 2.5, 4. , 1.3],
       [5.5, 2.6, 4.4, 1.2],
       [6.1, 3. , 4.6, 1.4],
       [5.8, 2.6, 4. , 1.2],
       [5. , 2.3, 3.3, 1. ],
       [5.6, 2.7, 4.2, 1.3],
       [5.7, 3. , 4.2, 1.2],
       [5.7, 2.9, 4.2, 1.3],
       [6.2, 2.9, 4.3, 1.3],
       [5.1, 2.5, 3. , 1.1],
       [5.7, 2.8, 4.1, 1.3],
       [6.3, 3.3, 6. , 2.5],
       [5.8, 2.7, 5.1, 1.9],
       [7.1, 3. , 5.9, 2.1],
       [6.3, 2.9, 5.6, 1.8],
       [6.5, 3. , 5.8, 2.2],
       [7.6, 3. , 6.6, 2.1],
       [4.9, 2.5, 4.5, 1.7],
       [7.3, 2.9, 6.3, 1.8],
       [6.7, 2.5, 5.8, 1.8],
       [7.2, 3.6, 6.1, 2.5],
       [6.5, 3.2, 5.1, 2. ],
       [6.4, 2.7, 5.3, 1.9],
       [6.8, 3. , 5.5, 2.1],
       [5.7, 2.5, 5. , 2. ],
       [5.8, 2.8, 5.1, 2.4],
       [6.4, 3.2, 5.3, 2.3],
       [6.5, 3. , 5.5, 1.8],
       [7.7, 3.8, 6.7, 2.2],
       [7.7, 2.6, 6.9, 2.3],
       [6. , 2.2, 5. , 1.5],
       [6.9, 3.2, 5.7, 2.3],
       [5.6, 2.8, 4.9, 2. ],
       [7.7, 2.8, 6.7, 2. ],
       [6.3, 2.7, 4.9, 1.8],
       [6.7, 3.3, 5.7, 2.1],
       [7.2, 3.2, 6. , 1.8],
       [6.2, 2.8, 4.8, 1.8],
       [6.1, 3. , 4.9, 1.8],
       [6.4, 2.8, 5.6, 2.1],
       [7.2, 3. , 5.8, 1.6],
       [7.4, 2.8, 6.1, 1.9],
       [7.9, 3.8, 6.4, 2. ],
       [6.4, 2.8, 5.6, 2.2],
       [6.3, 2.8, 5.1, 1.5],
       [6.1, 2.6, 5.6, 1.4],
       [7.7, 3. , 6.1, 2.3],
       [6.3, 3.4, 5.6, 2.4],
       [6.4, 3.1, 5.5, 1.8],
       [6. , 3. , 4.8, 1.8],
       [6.9, 3.1, 5.4, 2.1],
       [6.7, 3.1, 5.6, 2.4],
       [6.9, 3.1, 5.1, 2.3],
       [5.8, 2.7, 5.1, 1.9],
       [6.8, 3.2, 5.9, 2.3],
       [6.7, 3.3, 5.7, 2.5],
       [6.7, 3. , 5.2, 2.3],
       [6.3, 2.5, 5. , 1.9],
       [6.5, 3. , 5.2, 2. ],
       [6.2, 3.4, 5.4, 2.3],
       [5.9, 3. , 5.1, 1.8]])

type(data)#檢視data型別

numpy.ndarray

iris.target#取出鳶尾花特徵和鳶尾花類別資料,檢視其形狀及資料型別

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

iris.target_names

array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

iris.feature_names

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

import numpy
iris.DESCR

'Iris Plants Database\n====================\n\nNotes\n-----\nData Set Characteristics:\n :Number of Instances: 150 (50 in each of three classes)\n :Number of Attributes: 4 numeric, predictive attributes and the class\n :Attribute Information:\n - sepal length in cm\n - sepal width in cm\n - petal length in cm\n - petal width in cm\n - class:\n - Iris-Setosa\n - Iris-Versicolour\n - Iris-Virginica\n :Summary Statistics:\n\n ============== ==== ==== ======= ===== ====================\n Min Max Mean SD Class Correlation\n ============== ==== ==== ======= ===== ====================\n sepal length: 4.3 7.9 5.84 0.83 0.7826\n sepal width: 2.0 4.4 3.05 0.43 -0.4194\n petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)\n petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)\n ============== ==== ==== ======= ===== ====================\n\n :Missing Attribute Values: None\n :Class Distribution: 33.3% for each of 3 classes.\n :Creator: R.A. Fisher\n :Donor: Michael Marshall (MARSHALL%[email protected])\n :Date: July, 1988\n\nThis is a copy of UCI ML iris datasets.\nhttp://archive.ics.uci.edu/ml/datasets/Iris\n\nThe famous Iris database, first used by Sir R.A Fisher\n\nThis is perhaps the best known database to be found in the\npattern recognition literature. Fisher\'s paper is a classic in the field and\nis referenced frequently to this day. (See Duda & Hart, for example.) The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant. One class is linearly separable from the other 2; the\nlatter are NOT linearly separable from each other.\n\nReferences\n----------\n - Fisher,R.A. "The use of multiple measurements in taxonomic problems"\n Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n Mathematical Statistics" (John Wiley, NY, 1950).\n - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.\n (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.\n - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n Structure and Classification Rule for Recognition in Partially Exposed\n Environments". IEEE Transactions on Pattern Analysis and Machine\n Intelligence, Vol. PAMI-2, No. 1, 67-71.\n - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions\n on Information Theory, May 1972, 431-433.\n - See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II\n conceptual clustering system finds 3 classes in the data.\n - Many, many more ...\n'

iris.data
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5. , 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       [4.8, 3. , 1.4, 0.1],
       [4.3, 3. , 1.1, 0.1],
       [5.8, 4. , 1.2, 0.2],
       [5.7, 4.4, 1.5, 0.4],
       [5.4, 3.9, 1.3, 0.4],
       [5.1, 3.5, 1.4, 0.3],
       [5.7, 3.8, 1.7, 0.3],
       [5.1, 3.8, 1.5, 0.3],
       [5.4, 3.4, 1.7, 0.2],
       [5.1, 3.7, 1.5, 0.4],
       [4.6, 3.6, 1. , 0.2],
       [5.1, 3.3, 1.7, 0.5],
       [4.8, 3.4, 1.9, 0.2],
       [5. , 3. , 1.6, 0.2],
       [5. , 3.4, 1.6, 0.4],
       [5.2, 3.5, 1.5, 0.2],
       [5.2, 3.4, 1.4, 0.2],
       [4.7, 3.2, 1.6, 0.2],
       [4.8, 3.1, 1.6, 0.2],
       [5.4, 3.4, 1.5, 0.4],
       [5.2, 4.1, 1.5, 0.1],
       [5.5, 4.2, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5. , 3.2, 1.2, 0.2],
       [5.5, 3.5, 1.3, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [4.4, 3. , 1.3, 0.2],
       [5.1, 3.4, 1.5, 0.2],
       [5. , 3.5, 1.3, 0.3],
       [4.5, 2.3, 1.3, 0.3],
       [4.4, 3.2, 1.3, 0.2],
       [5. , 3.5, 1.6, 0.6],
       [5.1, 3.8, 1.9, 0.4],
       [4.8, 3. , 1.4, 0.3],
       [5.1, 3.8, 1.6, 0.2],
       [4.6, 3.2, 1.4, 0.2],
       [5.3, 3.7, 1.5, 0.2],
       [5. , 3.3, 1.4, 0.2],
       [7. , 3.2, 4.7, 1.4],
       [6.4, 3.2, 4.5, 1.5],
       [6.9, 3.1, 4.9, 1.5],
       [5.5, 2.3, 4. , 1.3],
       [6.5, 2.8, 4.6, 1.5],
       [5.7, 2.8, 4.5, 1.3],
       [6.3, 3.3, 4.7, 1.6],
       [4.9, 2.4, 3.3, 1. ],
       [6.6, 2.9, 4.6, 1.3],
       [5.2, 2.7, 3.9, 1.4],
       [5. , 2. , 3.5, 1. ],
       [5.9, 3. , 4.2, 1.5],
       [6. , 2.2, 4. , 1. ],
       [6.1, 2.9, 4.7, 1.4],
       [5.6, 2.9, 3.6, 1.3],
       [6.7, 3.1, 4.4, 1.4],
       [5.6, 3. , 4.5, 1.5],
       [5.8, 2.7, 4.1, 1. ],
       [6.2, 2.2, 4.5, 1.5],
       [5.6, 2.5, 3.9, 1.1],
       [5.9, 3.2, 4.8, 1.8],
       [6.1, 2.8, 4. , 1.3],
       [6.3, 2.5, 4.9, 1.5],
       [6.1, 2.8, 4.7, 1.2],
       [6.4, 2.9, 4.3, 1.3],
       [6.6, 3. , 4.4, 1.4],
       [6.8, 2.8, 4.8, 1.4],
       [6.7, 3. , 5. , 1.7],
       [6. , 2.9, 4.5, 1.5],
       [5.7, 2.6, 3.5, 1. ],
       [5.5, 2.4, 3.8, 1.1],
       [5.5, 2.4, 3.7, 1. ],
       [5.8, 2.7, 3.9, 1.2],
       [6. , 2.7, 5.1, 1.6],
       [5.4, 3. , 4.5, 1.5],
       [6. , 3.4, 4.5, 1.6],
       [6.7, 3.1, 4.7, 1.5],
       [6.3, 2.3, 4.4, 1.3],
       [5.6, 3. , 4.1, 1.3],
       [5.5, 2.5, 4. , 1.3],
       [5.5, 2.6, 4.4, 1.2],
       [6.1, 3. , 4.6, 1.4],
       [5.8, 2.6, 4. , 1.2],
       [5. , 2.3, 3.3, 1. ],
       [5.6, 2.7, 4.2, 1.3],
       [5.7, 3. , 4.2, 1.2],
       [5.7, 2.9, 4.2, 1.3],
       [6.2, 2.9, 4.3, 1.3],
       [5.1, 2.5, 3. , 1.1],
       [5.7, 2.8, 4.1, 1.3],
       [6.3, 3.3, 6. , 2.5],
       [5.8, 2.7, 5.1, 1.9],
       [7.1, 3. , 5.9, 2.1],
       [6.3, 2.9, 5.6, 1.8],
       [6.5, 3. , 5.8, 2.2],
       [7.6, 3. , 6.6, 2.1],
       [4.9, 2.5, 4.5, 1.7],
       [7.3, 2.9, 6.3, 1.8],
       [6.7, 2.5, 5.8, 1.8],
       [7.2, 3.6, 6.1, 2.5],
       [6.5, 3.2, 5.1, 2. ],
       [6.4, 2.7, 5.3, 1.9],
       [6.8, 3. , 5.5, 2.1],
       [5.7, 2.5, 5. , 2. ],
       [5.8, 2.8, 5.1, 2.4],
       [6.4, 3.2, 5.3, 2.3],
       [6.5, 3. , 5.5, 1.8],
       [7.7, 3.8, 6.7, 2.2],
       [7.7, 2.6, 6.9, 2.3],
       [6. , 2.2, 5. , 1.5],
       [6.9, 3.2, 5.7, 2.3],
       [5.6, 2.8, 4.9, 2. ],
       [7.7, 2.8, 6.7, 2. ],
       [6.3, 2.7, 4.9, 1.8],
       [6.7, 3.3, 5.7, 2.1],
       [7.2, 3.2, 6. , 1.8],
       [6.2, 2.8, 4.8, 1.8],
       [6.1, 3. , 4.9, 1.8],
       [6.4, 2.8, 5.6, 2.1],
       [7.2, 3. , 5.8, 1.6],
       [7.4, 2.8, 6.1, 1.9],
       [7.9, 3.8, 6.4, 2. ],
       [6.4, 2.8, 5.6, 2.2],
       [6.3, 2.8, 5.1, 1.5],
       [6.1, 2.6, 5.6, 1.4],
       [7.7, 3. , 6.1, 2.3],
       [6.3, 3.4, 5.6, 2.4],
       [6.4, 3.1, 5.5, 1.8],
       [6. , 3. , 4.8, 1.8],
       [6.9, 3.1, 5.4, 2.1],
       [6.7, 3.1, 5.6, 2.4],
       [6.9, 3.1, 5.1, 2.3],
       [5.8, 2.7, 5.1, 1.9],
       [6.8, 3.2, 5.9, 2.3],
       [6.7, 3.3, 5.7, 2.5],
       [6.7, 3. , 5.2, 2.3],
       [6.3, 2.5, 5. , 1.9],
       [6.5, 3. , 5.2, 2. ],
       [6.2, 3.4, 5.4, 2.3],
       [5.9, 3. , 5.1, 1.8]])
c=iris.data[:,0]#取出所有花的花萼長度(cm)的資料
print("花萼長度:",c)
花萼長度: [5.1 4.9 4.7 4.6 5.  5.4 4.6 5.  4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4 5.1
 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5.  5.  5.2 5.2 4.7 4.8 5.4 5.2 5.5 4.9 5.
 5.5 4.9 4.4 5.1 5.  4.5 4.4 5.  5.1 4.8 5.1 4.6 5.3 5.  7.  6.4 6.9 5.5
 6.5 5.7 6.3 4.9 6.6 5.2 5.  5.9 6.  6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1
 6.3 6.1 6.4 6.6 6.8 6.7 6.  5.7 5.5 5.5 5.8 6.  5.4 6.  6.7 6.3 5.6 5.5
 5.5 6.1 5.8 5.  5.6 5.7 5.7 6.2 5.1 5.7 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3
 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7 6.  6.9 5.6 7.7 6.3 6.7 7.2
 6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7 6.3 6.4 6.  6.9 6.7 6.9 5.8 6.8
 6.7 6.7 6.3 6.5 6.2 5.9]
b=iris.data[:,1]#取出所有花的花瓣長度(cm)
print("花瓣長度:",b)
花瓣長度: [3.5 3.  3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 3.7 3.4 3.  3.  4.  4.4 3.9 3.5
 3.8 3.8 3.4 3.7 3.6 3.3 3.4 3.  3.4 3.5 3.4 3.2 3.1 3.4 4.1 4.2 3.1 3.2
 3.5 3.1 3.  3.4 3.5 2.3 3.2 3.5 3.8 3.  3.8 3.2 3.7 3.3 3.2 3.2 3.1 2.3
 2.8 2.8 3.3 2.4 2.9 2.7 2.  3.  2.2 2.9 2.9 3.1 3.  2.7 2.2 2.5 3.2 2.8
 2.5 2.8 2.9 3.  2.8 3.  2.9 2.6 2.4 2.4 2.7 2.7 3.  3.4 3.1 2.3 3.  2.5
 2.6 3.  2.6 2.3 2.7 3.  2.9 2.9 2.5 2.8 3.3 2.7 3.  2.9 3.  3.  2.5 2.9
 2.5 3.6 3.2 2.7 3.  2.5 2.8 3.2 3.  3.8 2.6 2.2 3.2 2.8 2.8 2.7 3.3 3.2
 2.8 3.  2.8 3.  2.8 3.8 2.8 2.8 2.6 3.  3.4 3.1 3.  3.1 3.1 3.1 2.7 3.2
 3.3 3.  2.5 3.  3.4 3. ]
a=iris.data[:,2]#花瓣寬度(cm)的資料
print("花瓣寬度:",a)
花瓣寬度: [1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 1.5 1.6 1.4 1.1 1.2 1.5 1.3 1.4
 1.7 1.5 1.7 1.5 1.  1.7 1.9 1.6 1.6 1.5 1.4 1.6 1.6 1.5 1.5 1.4 1.5 1.2
 1.3 1.5 1.3 1.5 1.3 1.3 1.3 1.6 1.9 1.4 1.6 1.4 1.5 1.4 4.7 4.5 4.9 4.
 4.6 4.5 4.7 3.3 4.6 3.9 3.5 4.2 4.  4.7 3.6 4.4 4.5 4.1 4.5 3.9 4.8 4.
 4.9 4.7 4.3 4.4 4.8 5.  4.5 3.5 3.8 3.7 3.9 5.1 4.5 4.5 4.7 4.4 4.1 4.
 4.4 4.6 4.  3.3 4.2 4.2 4.2 4.3 3.  4.1 6.  5.1 5.9 5.6 5.8 6.6 4.5 6.3
 5.8 6.1 5.1 5.3 5.5 5.  5.1 5.3 5.5 6.7 6.9 5.  5.7 4.9 6.7 4.9 5.7 6.
 4.8 4.9 5.6 5.8 6.1 6.4 5.6 5.1 5.6 6.1 5.6 5.5 4.8 5.4 5.6 5.1 5.1 5.9
 5.7 5.2 5.  5.2 5.4 5.1]
d=iris.data[0]#取出某朵花的四個特徵及其類別
print(d)
[5.1 3.5 1.4 0.2]
Setasa=[]
Versicolor=[]
Virginica=[]#將所有花的特徵和類別分成三組,每組50個


for a in range(0,150):
    if iris.target[a]==0:
        data1=iris.data[a].tolist()
        data1.append("Setosa")
        Setasa.append(data1)
    elif iris.target[a] ==1:
        data1=iris.data[a].tolist()
        data1.append("Versicolor")
        Versicolor.append(data1)
    else:
        data1=iris.data[a].tolist()
        data1.append("Virginica")
        Virginica.append(data1)
result=numpy.array([Setasa,Versicolor,Virginica])
result#生成新的陣列,每個元素包含四個特徵+類別
array([[['5.1', '3.5', '1.4', '0.2', 'Setosa'],
        ['4.9', '3.0', '1.4', '0.2', 'Setosa'],
        ['4.7', '3.2', '1.3', '0.2', 'Setosa'],
        ['4.6', '3.1', '1.5', '0.2', 'Setosa'],
        ['5.0', '3.6', '1.4', '0.2', 'Setosa'],
        ['5.4', '3.9', '1.7', '0.4', 'Setosa'],
        ['4.6', '3.4', '1.4', '0.3', 'Setosa'],
        ['5.0', '3.4', '1.5', '0.2', 'Setosa'],
        ['4.4', '2.9', '1.4', '0.2', 'Setosa'],
        ['4.9', '3.1', '1.5', '0.1', 'Setosa'],
        ['5.4', '3.7', '1.5', '0.2', 'Setosa'],
        ['4.8', '3.4', '1.6', '0.2', 'Setosa'],
        ['4.8', '3.0', '1.4', '0.1', 'Setosa'],
        ['4.3', '3.0', '1.1', '0.1', 'Setosa'],
        ['5.8', '4.0', '1.2', '0.2', 'Setosa'],
        ['5.7', '4.4', '1.5', '0.4', 'Setosa'],
        ['5.4', '3.9', '1.3', '0.4', 'Setosa'],
        ['5.1', '3.5', '1.4', '0.3', 'Setosa'],
        ['5.7', '3.8', '1.7', '0.3', 'Setosa'],
        ['5.1', '3.8', '1.5', '0.3', 'Setosa'],
        ['5.4', '3.4', '1.7', '0.2', 'Setosa'],
        ['5.1', '3.7', '1.5', '0.4', 'Setosa'],
        ['4.6', '3.6', '1.0', '0.2', 'Setosa'],
        ['5.1', '3.3', '1.7', '0.5', 'Setosa'],
        ['4.8', '3.4', '1.9', '0.2', 'Setosa'],
        ['5.0', '3.0', '1.6', '0.2', 'Setosa'],
        ['5.0', '3.4', '1.6', '0.4', 'Setosa'],
        ['5.2', '3.5', '1.5', '0.2', 'Setosa'],
        ['5.2', '3.4', '1.4', '0.2', 'Setosa'],
        ['4.7', '3.2', '1.6', '0.2', 'Setosa'],
        ['4.8', '3.1', '1.6', '0.2', 'Setosa'],
        ['5.4', '3.4', '1.5', '0.4', 'Setosa'],
        ['5.2', '4.1', '1.5', '0.1', 'Setosa'],
        ['5.5', '4.2', '1.4', '0.2', 'Setosa'],
        ['4.9', '3.1', '1.5', '0.1', 'Setosa'],
        ['5.0', '3.2', '1.2', '0.2', 'Setosa'],
        ['5.5', '3.5', '1.3', '0.2', 'Setosa'],
        ['4.9', '3.1', '1.5', '0.1', 'Setosa'],
        ['4.4', '3.0', '1.3', '0.2', 'Setosa'],
        ['5.1', '3.4', '1.5', '0.2', 'Setosa'],
        ['5.0', '3.5', '1.3', '0.3', 'Setosa'],
        ['4.5', '2.3', '1.3', '0.3', 'Setosa'],
        ['4.4', '3.2', '1.3', '0.2', 'Setosa'],
        ['5.0', '3.5', '1.6', '0.6', 'Setosa'],
        ['5.1', '3.8', '1.9', '0.4', 'Setosa'],
        ['4.8', '3.0', '1.4', '0.3', 'Setosa'],
        ['5.1', '3.8', '1.6', '0.2', 'Setosa'],
        ['4.6', '3.2', '1.4', '0.2', 'Setosa'],
        ['5.3', '3.7', '1.5', '0.2', 'Setosa'],
        ['5.0', '3.3', '1.4', '0.2', 'Setosa']],

       [['7.0', '3.2', '4.7', '1.4', 'Versicolor'],
        ['6.4', '3.2', '4.5', '1.5', 'Versicolor'],
        ['6.9', '3.1', '4.9', '1.5', 'Versicolor'],
        ['5.5', '2.3', '4.0', '1.3', 'Versicolor'],
        ['6.5', '2.8', '4.6', '1.5', 'Versicolor'],
        ['5.7', '2.8', '4.5', '1.3', 'Versicolor'],
        ['6.3', '3.3', '4.7', '1.6', 'Versicolor'],
        ['4.9', '2.4', '3.3', '1.0', 'Versicolor'],
        ['6.6', '2.9', '4.6', '1.3', 'Versicolor'],
        ['5.2', '2.7', '3.9', '1.4', 'Versicolor'],
        ['5.0', '2.0', '3.5', '1.0', 'Versicolor'],
        ['5.9', '3.0', '4.2', '1.5', 'Versicolor'],
        ['6.0', '2.2', '4.0', '1.0', 'Versicolor'],
        ['6.1', '2.9', '4.7', '1.4', 'Versicolor'],
        ['5.6', '2.9', '3.6', '1.3', 'Versicolor'],
        ['6.7', '3.1', '4.4', '1.4', 'Versicolor'],
        ['5.6', '3.0', '4.5', '1.5', 'Versicolor'],
        ['5.8', '2.7', '4.1', '1.0', 'Versicolor'],
        ['6.2', '2.2', '4.5', '1.5', 'Versicolor'],
        ['5.6', '2.5', '3.9', '1.1', 'Versicolor'],
        ['5.9', '3.2', '4.8', '1.8', 'Versicolor'],
        ['6.1', '2.8', '4.0', '1.3', 'Versicolor'],
        ['6.3', '2.5', '4.9', '1.5', 'Versicolor'],
        ['6.1', '2.8', '4.7', '1.2', 'Versicolor'],
        ['6.4', '2.9', '4.3', '1.3', 'Versicolor'],
        ['6.6', '3.0', '4.4', '1.4', 'Versicolor'],
        ['6.8', '2.8', '4.8', '1.4', 'Versicolor'],
        ['6.7', '3.0', '5.0', '1.7', 'Versicolor'],
        ['6.0', '2.9', '4.5', '1.5', 'Versicolor'],
        ['5.7', '2.6', '3.5', '1.0', 'Versicolor'],
        ['5.5', '2.4', '3.8', '1.1', 'Versicolor'],
        ['5.5', '2.4', '3.7', '1.0', 'Versicolor'],
        ['5.8', '2.7', '3.9', '1.2', 'Versicolor'],
        ['6.0', '2.7', '5.1', '1.6', 'Versicolor'],
        ['5.4', '3.0', '4.5', '1.5', 'Versicolor'],
        ['6.0', '3.4', '4.5', '1.6', 'Versicolor'],
        ['6.7', '3.1', '4.7', '1.5', 'Versicolor'],
        ['6.3', '2.3', '4.4', '1.3', 'Versicolor'],
        ['5.6', '3.0', '4.1', '1.3', 'Versicolor'],
        ['5.5', '2.5', '4.0', '1.3', 'Versicolor'],
        ['5.5', '2.6', '4.4', '1.2', 'Versicolor'],
        ['6.1', '3.0', '4.6', '1.4', 'Versicolor'],
        ['5.8', '2.6', '4.0', '1.2', 'Versicolor'],
        ['5.0', '2.3', '3.3', '1.0', 'Versicolor'],
        ['5.6', '2.7', '4.2', '1.3', 'Versicolor'],
        ['5.7', '3.0', '4.2', '1.2', 'Versicolor'],
        ['5.7', '2.9', '4.2', '1.3', 'Versicolor'],
        ['6.2', '2.9', '4.3', '1.3', 'Versicolor'],
        ['5.1', '2.5', '3.0', '1.1', 'Versicolor'],
        ['5.7', '2.8', '4.1', '1.3', 'Versicolor']],

       [['6.3', '3.3', '6.0', '2.5', 'Virginica'],
        ['5.8', '2.7', '5.1', '1.9', 'Virginica'],
        ['7.1', '3.0', '5.9', '2.1', 'Virginica'],
        ['6.3', '2.9', '5.6', '1.8', 'Virginica'],
        ['6.5', '3.0', '5.8', '2.2', 'Virginica'],
        ['7.6', '3.0', '6.6', '2.1', 'Virginica'],
        ['4.9', '2.5', '4.5', '1.7', 'Virginica'],
        ['7.3', '2.9', '6.3', '1.8', 'Virginica'],
        ['6.7', '2.5', '5.8', '1.8', 'Virginica'],
        ['7.2', '3.6', '6.1', '2.5', 'Virginica'],
        ['6.5', '3.2', '5.1', '2.0', 'Virginica'],
        ['6.4', '2.7', '5.3', '1.9', 'Virginica'],
        ['6.8', '3.0', '5.5', '2.1', 'Virginica'],
        ['5.7', '2.5', '5.0', '2.0', 'Virginica'],
        ['5.8', '2.8', '5.1', '2.4', 'Virginica'],
        ['6.4', '3.2', '5.3', '2.3', 'Virginica'],
        ['6.5', '3.0', '5.5', '1.8', 'Virginica'],
        ['7.7', '3.8', '6.7', '2.2', 'Virginica'],
        ['7.7', '2.6', '6.9', '2.3', 'Virginica'],
        ['6.0', '2.2', '5.0', '1.5', 'Virginica'],
        ['6.9', '3.2', '5.7', '2.3', 'Virginica'],
        ['5.6', '2.8', '4.9', '2.0', 'Virginica'],
        ['7.7', '2.8', '6.7', '2.0', 'Virginica'],
        ['6.3', '2.7', '4.9', '1.8', 'Virginica'],
        ['6.7', '3.3', '5.7', '2.1', 'Virginica'],
        ['7.2', '3.2', '6.0', '1.8', 'Virginica'],
        ['6.2', '2.8', '4.8', '1.8', 'Virginica'],
        ['6.1', '3.0', '4.9', '1.8', 'Virginica'],
        ['6.4', '2.8', '5.6', '2.1', 'Virginica'],
        ['7.2', '3.0', '5.8', '1.6', 'Virginica'],
        ['7.4', '2.8', '6.1', '1.9', 'Virginica'],
        ['7.9', '3.8', '6.4', '2.0', 'Virginica'],
        ['6.4', '2.8', '5.6', '2.2', 'Virginica'],
        ['6.3', '2.8', '5.1', '1.5', 'Virginica'],
        ['6.1', '2.6', '5.6', '1.4', 'Virginica'],
        ['7.7', '3.0', '6.1', '2.3', 'Virginica'],
        ['6.3', '3.4', '5.6', '2.4', 'Virginica'],
        ['6.4', '3.1', '5.5', '1.8', 'Virginica'],
        ['6.0', '3.0', '4.8', '1.8', 'Virginica'],
        ['6.9', '3.1', '5.4', '2.1', 'Virginica'],
        ['6.7', '3.1', '5.6', '2.4', 'Virginica'],
        ['6.9', '3.1', '5.1', '2.3', 'Virginica'],
        ['5.8', '2.7', '5.1', '1.9', 'Virginica'],
        ['6.8', '3.2', '5.9', '2.3', 'Virginica'],
        ['6.7', '3.3', '5.7', '2.5', 'Virginica'],
        ['6.7', '3.0', '5.2', '2.3', 'Virginica'],
        ['6.3', '2.5', '5.0', '1.9', 'Virginica'],
        ['6.5', '3.0', '5.2', '2.0', 'Virginica'],
        ['6.2', '3.4', '5.4', '2.3', 'Virginica'],
        ['5.9', '3.0', '5.1', '1.8', 'Virginica']]], dtype='<U32')
print("最大值:",np.max(iris.data[:,1]),#計算鳶尾花花瓣長度的最大值,平均值,中值,均方差
"平均值:",np.mean(iris.data[:,1]),
"中值:",np.median(iris.data[:,1]),
"均方差:",np.std(iris.data[:,1]))

最大值: 4.4 平均值: 3.0540000000000003 中值: 3.0 均方差: 0.4321465800705435

import matplotlib.pyplot as plt#顯示鳶尾花某一特徵的曲線圖,散點圖
plt.plot(iris.data[:,0],iris.data[:,1])
plt.show()

相關推薦

作業--鳶尾花

from sklearn.datasets import load_iris import numpy as np import sklearn#從sklearn包自帶的資料集中讀出鳶尾花資料集data iris =load_iris() iris.keys() dict_keys(['data'

作業(二)

第六次作業 absolut margin posit logs jpg ng- mage ima div { margin: 20px } #d1 { width: 180px; height: 180px; background-color: yellow; border

作業

學生 數據庫 第六次作業 期望 進行 刪除 left document mage 0. 團隊介紹 團隊名稱:Java-Team 項目名稱:課程群組系統 團隊組成:      PM:陳陽(2017282110288 )      團隊成員:吳政楠:(20172821

軟件工程作業——例行報告

分享 png 響應 com width .cn 鍵盤 blog 報告 用到的知識點:Java中監聽鍵盤響應,繪制曲線 軟件工程第六次作業——例行報告

軟件工程作業 - 每周例行匯報

ima 第六次作業 width str eight 工程 匯報 tab 軟件工程 本周PSP 本周進度條 博文字數 2083字 代碼行數 94行 累計進度圖 本周PSP餅狀圖 軟件工程第六次

2017秋-軟件工程作業-七周例行總結

第七周 alt 博文 本周 log es2017 代碼行數 工程 logs 1本周PSP 2字數統計 3代碼行數累計圖 4博文字數累計圖 5本周餅狀圖 2017秋-軟件工程第六次作業-第七周例行總結

作業—例行報告

size font ima .com 折線圖 .cn com pan 進度 本周PSP 進度條 代碼累計折線圖 博文累計折線圖 本周餅狀圖 第六次作業—例行報告

2017年軟件工程作業-每周例行報告

-s span 技術 font 作業 ont 折線圖 1-1 博文 1.PSP表格 2.PSP餅狀圖 3.博文字數累積折線圖 4.代碼行數累積折線圖 5.進度條 2017年軟件工程第六次作業-每周例行報告

C語言程序設計作業——循環結構(2).

是什麽 絕對值 方法 程序設計 輸入一個數 系列 發生 自己 很好 (一)改錯題 序列求和:輸入一個正實數eps,計算序列部分和 1 - 1/4 + 1/7 - 1/10 + ... ,精確到最後一項的絕對值小於eps(保留6位小數)。   輸入輸出樣例:   Input

C語言程序設計作業

-1016 你在 快速實現 無限 沒有 部分 輸入 需要 優先 (一)改錯題 序列求和:輸入一個正實數eps,計算序列部分和 1 - 1/4 + 1/7 - 1/10 + ... ,精確到最後一項的絕對值小於eps(保留6位小數)。   輸入輸出樣例:   Input ep

C語言程序設計作業——循環結構(2)

但是 n-1 輸入輸出 printf 控制 運行 進行 定義 small (一)改錯題 序列求和:輸入一個正實數eps,計算序列部分和 1 - 1/4 + 1/7 - 1/10 + ... ,精確到最後一項的絕對值小於eps(保留6位小數)。   輸入輸出樣例:   Inp

作業(3)

cccccc -c mar ima absolute solid .cn abs mage div { margin: 20px } #d1 { width: 180px; height: 200px; background-color: black; border: so

作業--結對 需求分析與原型設計

四級 什麽 小結 亮點 學習平臺 社會 一個人 管理員 實踐 一.結對成員 蘇詠梅(3025)、王純(3020) 二.項目 Crazy在線英語學習 三.需求分析(NABCD模型) N(Need,需求):了解用戶需求。 作為國際通用語言---英語,在很多重要場合上廣泛使用。英

福大軟工1816 · 作業 - 拖鞋旅遊隊選題報告

禮品 混亂 alt 得到 關系 經歷 運營 風格 如果 【組長博客鏈接】 031602428 蘇路明 【NABCD分析】 1.N(NEED,需求) 當今人們的生活質量提高了,出門旅遊成了很普遍的事情。當我們出外遊玩時,不管是在船上,在飛機上或者在景區裏,我們都不免要拍幾張

福大軟工1816 · 作業 - 團隊選題報告

為我 分析 在哪裏 傳統 工作量 用戶分析 就是 com .cn 【組長博客鏈接】 031602428 蘇路明 【NABCD分析】 1.N(NEED,需求) 當今人們的生活質量提高了,出門旅遊成了很普遍的事情。當我們出外遊玩時,不管是在船上,在飛機上或者在景區裏,我們都不

2018軟工作業

for 新用戶 需求 然而 攝像 機器 發展 決定 live 組長博客鏈接:https://www.cnblogs.com/hjjLcherry/p/9784813.html NABCD N(Need 需求) 隨著移動端互聯網的規模的急速增長,人們的支付習慣已然改變。近

軟工作業

體驗 微博 沒有 其他 情況下 品牌 畫冊 結果 不成功 【組長博客鏈接】 031602428 蘇路明 【NABCD分析】 1.N(NEED,需求) 當今人們的生活質量提高了,出門旅遊成了很普遍的事情。當我們出外遊玩時,不管是在船上,在飛機上或者在景區裏,我們都不免要拍幾

軟工1816 · 作業 - 團隊選題報告

pan 去掉 你們 采集 完全 缺少 社交網站 這一 好處 組長博客地址:點擊這裏 選題報告內容 選題報告下載鏈接:點擊下載 本組評審表設計 評審表下載鏈接:點擊下載 評審表預覽: NABCD 分析引用 NEED 需求 用戶群體 主要針對人群:福州大學的廣大

作業 - 團隊選題報告

良性 問卷調查 這一 自己的 決定 人的需求 推送 基本 品牌 目錄 第六次作業 - 團隊選題報告 NABCD分析引用 N(Need,需求): A(Approach,做法): B(Benefit,好處): C(Competitors,競爭): D(Delivery,交付)