洛谷P1600 天天愛跑步(差分 LCA 桶)
阿新 • • 發佈:2018-11-06
題意
Sol
一步一步的來考慮
\(25 \%\):直接\(O(nm)\)的暴力
鏈的情況:維護兩個差分陣列,分別表示從左向右和從右向左的貢獻,
\(S_i = 1\):統計每個點的子樹內有多少起點即可
\(T_i = 1\):同樣還是差分的思想,由於每個點 能對其產生的點的深度是相同的(假設為\(x\)),那麼訪問該點時記錄下\(dep[x]\)的數量,將結束時\(dep[x]\)的數量與其做差即可
滿分做法和上面類似,我們考慮把每個點的貢獻都轉換到子樹內統計
對於每次詢問,拆為\(S->lca, lca -> T\)兩種(從下到上 / 從上到下)
從上往下需要滿足的條件:\(dep[i] - w[i] = dep[T] - len\)
從下往上需要滿足的條件:\(dep[i] + w[i] = dep[s]\)
#include<bits/stdc++.h> #define Pair pair<int, int> #define MP make_pair #define fi first #define se second using namespace std; const int MAXN = 1e6 + 10, mod = 1e9 + 7, B = 20; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N, M, ans[MAXN], dep[MAXN], top[MAXN], son[MAXN], siz[MAXN], fa[MAXN], S[MAXN], T[MAXN], w[MAXN], tmp[MAXN], num2[MAXN], sum1[MAXN], sum2[MAXN], Lca[MAXN]; int *num1;//上 -> 下 vector<int> up[MAXN], da[MAXN], dc[MAXN]; vector<int> v[MAXN]; void dfs(int x, int _fa) { dep[x] = dep[_fa] + 1; siz[x] = 1; fa[x] = _fa; for(int i = 0, to; i < v[x].size(); i++) { if((to = v[x][i]) == _fa) continue; dfs(to, x); siz[x] += siz[to]; if(siz[to] > siz[son[x]]) son[x] = to; } } void dfs2(int x, int topf) { top[x] = topf; if(!son[x]) return ; dfs2(son[x], topf); for(int i = 0, to; i < v[x].size(); i++) if(!top[to = v[x][i]]) dfs2(to, to); } int LCA(int x, int y) { while(top[x] ^ top[y]) { if(dep[top[x]] < dep[top[y]]) swap(x, y); x = fa[top[x]]; } return dep[x] < dep[y] ? x : y; } void Deal(int s, int t, int id) {// from s to t int lca = LCA(s, t); Lca[id] = lca; up[lca].push_back(s);//from down to up int dis = dep[s] + dep[t] - 2 * dep[lca]; sum2[s]++; da[t].push_back(dep[t] - dis);//increase dc[lca].push_back(dep[t] - dis);//decrase } void Find(int x) { int t1 = num1[dep[x] - w[x]], t2 = num2[dep[x] + w[x]];// 1: 從上往下 2:從下往上 for(int i = 0, to; i < v[x].size(); i++) { if((to = v[x][i]) == fa[x]) continue; Find(to); } num2[dep[x]] += sum2[x]; for(int i = 0; i < da[x].size(); i++) num1[da[x][i]]++; ans[x] += num2[dep[x] + w[x]] - t2 + num1[dep[x] - w[x]] - t1; for(int i = 0; i < up[x].size(); i++) num2[dep[up[x][i]]]--; for(int i = 0; i < dc[x].size(); i++) num1[dc[x][i]]--; } int main() { //freopen("a.in", "r", stdin); freopen("a.out", "w", stdout); num1 = tmp + (int)3e5 + 10; N = read(); M = read(); for(int i = 1; i <= N - 1; i++) { int x = read(), y = read(); v[x].push_back(y); v[y].push_back(x); } dep[0] = -1; dfs(1, 0); dfs2(1, 1); //for(int i = 1; i <= N; i++, puts("")) for(int j = 1; j <= N; j++) printf("%d %d %d\n", i, j, LCA(i, j)); for(int i = 1; i <= N; i++) w[i] = read(); for(int i = 1; i <= M; i++) S[i] = read(), T[i] = read(), Deal(S[i], T[i], i); Find(1); for(int i = 1; i <= M; i++) if(dep[S[i]] - dep[Lca[i]] == w[Lca[i]]) ans[Lca[i]]--; for(int i = 1; i <= N; i++) printf("%d ", ans[i]); return 0; }