某叫不出名字的冬令營J(離線+分治+揹包DP)
連結:http://codeforces.com/gym/101741/problem/J
題意:給定一個序列,q次詢問,每次詢問從[l,r]從選若干個數使得這些數能被m整除的方案數
這個一開始就想到線段樹+揹包合併,複雜度O(nm^2logn),算了下好像很極限。。寫了下超了7倍時限。。線段樹常數還是太大了TAT
然後正解是分治,由於揹包合併的代價太大,我們更傾向於選擇一個一個元素往上加,因此對於一個分治點mid,如果區間跨過這個點,那麼可以先預處理出從mid向左延伸各個長度的揹包,向右延伸各個長度的揹包。。然後區間就能分成2段合併,由於只需要找出餘數為0的方案數,因此只需要O(m)列舉就可以了。。
每層分治預處理要O(n),每個線段合併要O(m),因此複雜度為O(nlogn+qm)
如果把長度比較小的線段預先暴力處理一下或許會更快?
/** * ┏┓ ┏┓ * ┏┛┗━━━━━━━┛┗━━━┓ * ┃ ┃ * ┃ ━ ┃ * ┃ > < ┃ * ┃ ┃ * ┃... ⌒ ... ┃ * ┃ ┃ * ┗━┓ ┏━┛ * ┃ ┃ Code is far away from bug with the animal protecting * ┃ ┃ 神獸保佑,程式碼無bug * ┃ ┃ * ┃ ┃ * ┃ ┃ * ┃ ┃ * ┃ ┗━━━┓ * ┃ ┣┓ * ┃ ┏┛ * ┗┓┓┏━┳┓┏┛ * ┃┫┫ ┃┫┫ * ┗┻┛ ┗┻┛ */ #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue> #include<cmath> #include<map> #include<stack> #include<set> #include<bitset> #define inc(i,l,r) for(int i=l;i<=r;i++) #define dec(i,l,r) for(int i=l;i>=r;i--) #define link(x) for(edge *j=h[x];j;j=j->next) #define mem(a) memset(a,0,sizeof(a)) #define ll long long #define eps 1e-8 #define succ(x) (1LL<<(x)) #define lowbit(x) (x&(-x)) #define sqr(x) ((x)*(x)) #define NM 200015 #define nm 200005 #define pi 3.1415926535897931 using namespace std; const ll inf=1e9+7; ll read(){ ll x=0,f=1;char ch=getchar(); while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();} while(isdigit(ch))x=x*10+ch-'0',ch=getchar(); return f*x; } struct tmp{int x,y,i;}; vector<tmp>d[NM]; int n,m,_x,_y,a[NM],p; ll l[NM][20],r[NM][20],ans[NM]; void div(int i,int x,int y){ int t=x+y>>1,tot=d[i].size()-1; if(y-x+1<=50||tot==-1)return; inc(j,t+1,y){ inc(k,0,m-1)r[j-t][(k+a[j])%m]=r[j-t-1][k]; inc(k,0,m-1)r[j-t][k]+=r[j-t-1][k],r[j-t][k]%=inf; } dec(j,t,x){ inc(k,0,m-1)l[t-j+1][(k+a[j])%m]=l[t-j][k]; inc(k,0,m-1)l[t-j+1][k]+=l[t-j][k],l[t-j+1][k]%=inf; } inc(j,0,tot)if(d[i][j].y<t)d[i<<1].push_back(d[i][j]); else if(d[i][j].x>t+1)d[i<<1|1].push_back(d[i][j]); else inc(k,0,m-1) ans[d[i][j].i]+=r[d[i][j].y-t][k]*l[t-d[i][j].x+1][(m-k)%m]%inf,ans[d[i][j].i]%=inf; d[i].clear(); div(i<<1,x,t-1);div(i<<1|1,t+2,y); } int main(){ //freopen("data.in","r",stdin); n=read();m=read(); inc(i,1,n)a[i]=read()%m; l[0][0]=r[0][0]=1; p=read(); inc(i,1,p){ _x=read();_y=read(); if(_y-_x+1>50)d[1].push_back(tmp{_x,_y,i}); else{ inc(i,_x,_y){ inc(j,0,m-1)l[i-_x+1][(j+a[i])%m]=l[i-_x][j]; inc(j,0,m-1)l[i-_x+1][j]+=l[i-_x][j],l[i-_x+1][j]%=inf; } ans[i]=l[_y-_x+1][0]; } } div(1,1,n); inc(i,1,p)printf("%lld\n",ans[i]); return 0; }
J. Subsequence Sum Queries
time limit per test
2 seconds
memory limit per test
256 mebibytes
input
standard input
output
standard output
You have an array a containing n integers and an integer m. You also have q queries to answer. The i-th query is described as a pair of integers (l
Input
The first line contains two integers n and m: the number of elements in a and the modulo (1 ≤ n ≤ 2·105, 1 ≤ m ≤ 20).
The second line contains n integers ai: the elements of array a (0 ≤ ai ≤ 109).
The third line contains one integer q: the number of queries (1 ≤ q ≤ 2·105).
Then q lines follow. The i-th of these lines contains two integers li and ri that describe the i-th query (1 ≤ li ≤ ri ≤ n).
Output
Print q lines. The i-th of them must contain the answer for the i-th query. Queries are indexed in the order they are given in the input. Since the answers can be very large, print them modulo 109 + 7.
Example
Input
Copy
4 3 5 1 3 2 4 1 2 1 3 1 4 2 4
Output
Copy
2 4 6 4