樸素貝葉斯分類numpy版本——深度學習
阿新 • • 發佈:2018-11-07
#!python3 #這裡使用樸素貝葉斯演算法 #即貝葉斯演算法的簡化版 from numpy import * def loadDataSet(): postingList=[['my','dog','had','flea',\ 'problems','help','please'], ['mybe','not','take','him',\ 'to','dog','park','stupid'], ['my','dalmation','is','so','cute',\ 'I','love','him'], ['stop','posting','stupid','worthless','garbage'], ['mr','licks','ate','my','steak','how',\ 'to','stop','him'], ['quit','buying', 'worthless','dog','food','stupid']] classVec = [0,1,0,1,0,1] #1 代表侮辱性文字,0代表正常言論 return postingList,classVec def createVocabList(dataSet): vocabSet = set([]) for document in dataSet: vocabSet = vocabSet | set(document) return list(vocabSet) def setOfWords2Vec(vocabList,inputSet): returnVec = [0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 else: print("the word: %s is not in my Vocabulary!" %word) return returnVec #計算每個類別中的文件數目 #對每篇訓練文件: # 對每個類別: # 如果詞條出現在文件中————》增加該詞條的計數值 # 增加所有詞條的計數值 # 對每個類別: # 對每個詞條: # 將該詞條的數目初一總詞條數得到條件概率 # 返回每個類別的條件概率 def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pabusive = sum(trainCategory)/float(numTrainDocs) p0Num = zeros(numWords);p1Num = zeros(numWords) p0Denom = 0.0;p1Denom = 0.0 for i in range(numTrainDocs): if trainCategory[i] == 1: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) p1Vect = p1Num/p1Denom p0Vect = p0Num/p0Denom return p0Vect,p1Vect,pabusive def classifyNB(vec2Classify, p0Vec, p1Vec,pClass1): p1 = sum(vec2Classify * p1Vec) + log(pClass1) p0 = sum(vec2Classify * p0Vec) + log(1.0-pClass1) if p1 > p0: return 1 else: return 0 def testingNB(): listOPosts,listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat=[] for postingDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList,postinDoc)) p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses)) testEntry = ['love', 'my', 'dalmation'] thisDoc = array(setOfWords2Vec(myVocabList,testEntry)) print (testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V\ ,pAb)) #文件詞袋模型 def bagOfWord2VecMN(vocabList, inputSet): returnVec = [0] * len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] += 1 return returnVec #檔案解析及完整的垃圾郵件測試函式 def textParse(bigString): import re listOfTokens = re.split(r'\w*',bigString) return [tok.lower() for tok in listOfTokens if len(tok) >2 2] def spamTest(): docList=[];classList = [];fullText = [] for i in range(1,26): wordList = textParse(open('email/span/%d.txt'%i).read()) docList.append(wordList) classList.append(1) wordList = textParse(open('email/ham/%d.txt'%i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(0) vocabList = createVocabList(docList) trainingSet = range(50);testSet = [] for i in range(10): randIndex = int(random.uniform(0,len(trainingSet))) testSet.append(trainingSet[randIndex]) del(trainingSet[randIndex]) trainMat = [];trainClasses = [] for docIndex in trainingSet: trainMat.append(setOfWords2Vec(vocabList, docIndex])) trainClasses.append(classList[docIndex]) p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses)) errorCount = 0 for docIndex in testSet: wordVector = setOfWords2Vec(vocabList, docList[docIndex]) if classifyNB(array(wordVector),p0V,p1V,pSpam) !=\ classList[docIndex]: errorCount += 1 print ("the error rate is:",float(errorCount)/len(testSet)) #Rss源分類器及高頻詞去除函式 def clacMostFreq(vocabList,fullText): import operator freqDict = {} for token in vocabList: freqDict[token] = fullText.count(token) sortedFreq = sorted(freqDict.items(),key = operator.itemgetter(1),reverse=True) return sortedFreq[:30] def localWords(feed1,feed0): import feedparser docList = [];classList = [];fullText = [] minLen = min(len(feed1['entries']),len(feed0['entries'])) for i in range(minLen): wordList = textParse(feed1['entries'][i]['summary']) docList.append(wordList) fullText.extend(wordList) classList.append(1) wordList = textParse(feed0['entries'][i]['summary']) docList.append(wordList) fullText.extend(wordList) classList.append(0) vocabList = createVocabList(docList) top30Words = calcMostFreq(vocabList,fullText)