1. 程式人生 > >高數(同濟6版)函式與極限---複習

高數(同濟6版)函式與極限---複習

主要是想把這章的知識點連貫起來。這章的知識點的編排順序很連貫,只有學了上一個小節才看的懂下一個,這章主要研究的是函式的極限,包括極限的由來、定義、性質和求極限,核心問題是如何求極限。圍繞求極限來發散一下思維.既然是求極限,求的是什麼的極限?顯然,求的是函式的極限,那麼函式有哪些?

       1.數列 可以把數列看做是一個定義域為正整數集合的特殊函式
       2.初等函式 包括5類基本初等函式(指、冪、對、正三角、反三角函式)和這些基本初等函式的有限次組合構成的新函式

       3.其它比較複雜的函式,如無限次基本初等函式組成的新函式

本章就是圍繞這些函式來講它們的極限。知道了函式有哪些後,想要了解函式的由來怎麼辦?那就要了解對映,先有了對映後來才有了函式,對映是什麼?兩堆元素之間建立的嚴密的對應關係,那麼數學上的對映就是兩堆數字之間建立的嚴密的對應關係,如何來用可計算的方式來描述映射了?那麼就發明了函式,兩堆數字在數學上叫集合。所以這一章第一節先講集合,再講對映,最後將函式,講的內容是如何定義,有什麼性質,怎麼分類,接著第二節開始討論數列的極限,第三節討論函式的極限,其實這兩節討論的都是極限的由來、定義和性質,至於求極限,需要了解很多其它數學知識才能求。所以後邊的小節圍繞如何求極限展開。

如何求極限?首先想到的應該如何求一些簡單函式的極限,然後再去求由這些簡單函式組合成的複雜函式的極限。最簡單的函式有哪些?當然相對來說初等函式是最簡單的。於是在書上到求極限的時候往往是從最簡單的求初等函式的極限開始求,各種求法就不一一敘述,刷題即可。為了求極限和探討求極限的法則介紹的各個知識點包括無窮大、無窮小、連續性等等各種定理準則及極限本身的性質和準則也不敘述了,要自己看書才能明白。但是有個看書的順序:先看極限的定義和極限的性質,再看無窮大無窮小,再看極限的運演算法則(只有懂了無窮大、小)才能推出極限的運演算法則,然後再看一些稍微有點變化的函式的極限求法如:sinx/x,(1+1/x)的x次方,最後看連續性,會發現基本初等函式都在定義域內連續,且某個點的極限求法就是改點的函式值。連續性也為下一章求導微分做鋪墊。