map-reduce之wordCount DEMO
阿新 • • 發佈:2018-11-08
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>hadoop</groupId> <artifactId>demo</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>jar</packaging> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>2.6.0</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-hdfs</artifactId> <version>2.6.0</version> </dependency> <dependency> <groupId>jdk.tools</groupId> <artifactId>jdk.tools</artifactId> <version>1.6</version> <scope>system</scope> <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-mapreduce-client-core</artifactId> <version>2.6.0</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> </dependencies> </project>
package hadoop; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WCMain { private static String iPath = "hdfs://localhost:9000/wordcount/input/test.txt"; private static String oPath = "hdfs://localhost:9000/wordcount/output/"; /** * 1. 業務邏輯相關資訊通過job物件定義與實現 2. 將繫結好的job提交給叢集去執行 */ public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job wcjob = Job.getInstance(conf); wcjob.setJarByClass(WCMain.class); wcjob.setMapperClass(WCMapper.class); wcjob.setReducerClass(WCReducer.class); // 設定業務邏輯Mapper類的輸出key和value的資料型別 wcjob.setMapOutputKeyClass(Text.class); wcjob.setMapOutputValueClass(IntWritable.class); // 設定業務邏輯Reducer類的輸出key和value的資料型別 wcjob.setOutputKeyClass(Text.class); wcjob.setOutputValueClass(IntWritable.class); // 指定要處理的資料所在的位置 FileSystem fs = FileSystem.get(conf); Path IPath = new Path(iPath); if (fs.exists(IPath)) { FileInputFormat.addInputPath(wcjob, IPath); } // 指定處理完成之後的結果所儲存的位置 Path OPath = new Path(oPath); fs.delete(OPath, true); FileOutputFormat.setOutputPath(wcjob, OPath); // 向yarn叢集提交這個job boolean res = wcjob.waitForCompletion(true); System.exit(res ? 0 : 1); } }
package hadoop; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; /** * @ClassName: WCReducer * @Description: TODO * @author kngines * @date 2018年3月17日 */ public class WCReducer extends Reducer<Text, IntWritable, Text, IntWritable> { // 生命週期:框架每傳遞進來一個kv 組,reduce方法被呼叫一次 @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int count = 0; // 定義一個計數器 for (IntWritable value : values) { // 遍歷所有v,並累加到count中 count += value.get(); } context.write(key, new IntWritable(count)); } }
package hadoop;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
/**
* @ClassName: WCMapper
* @Description: TODO
* @author kngines
* @date 2018年3月17日
*/
public class WCMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
// map方法的生命週期: 框架每傳一行資料就被呼叫一次
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString(); // 行資料轉換為string
String[] words = line.split(" "); // 行資料分隔單詞
for (String word : words) { // 遍歷陣列,輸出<單詞,1>
context.write(new Text(word), new IntWritable(1));
}
}
}
問題總結
問題 A :
FileAlreadyExistsException
FileAlreadyExistsException: Output directory hdfs://localhost:9000/wordcount/output already exists
解決
程式碼邏輯判斷(java)
// 指定處理完成之後的結果所儲存的位置
Path OPath = new Path(oPath);
fs.delete(OPath, true);
手動刪除Hadoop 檔案目錄
問題 B:
SafeModeException
問題描述 & 原因分析
該問題可能會使 Hadoop執行任務一直卡在: INFO mapreduce.Job: Runing job。
由空間磁碟剩餘不足導致。實驗時,虛擬機器根目錄剩餘空間不足10%,將新安裝的一些軟體包刪除後,重新執行問題得到解決。
org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.hdfs.server.namenode.SafeModeException): Cannot delete /benchmarks/TestDFSIO. Name node is in safe mode.
Resources are low on NN. Please add or free up more resources then turn off safe mode manually. NOTE: If you turn off safe mode before adding resources, the NN will immediately return to safe mode. Use "hdfs dfsadmin -safemode leave" to turn safe mode off.
解決方式
離開安全模式
hdfs dfsadmin -safemode leave
刪除 LInux上 多餘檔案(實驗中採取,簡單有效), 或者 擴充套件虛擬機器分割槽
其他知識
殺掉當前執行的 Hadoop 任務
hadoop job -list # 列出當前執行所有 job
hadoop job -kill job_xx_xx # 通過job_id 殺掉某個job任務
查詢 Linux 系統上的 大檔案
find . -type f -size +100M # 查詢100M以上的檔案
df -hl # 檢視Linux 磁碟使用情況
hadoop jar hadoop-mapreduce-examples-2.7.7.jar wordcount /user/root/input/ /user/root/out1/