51Nod 1028 - 大數乘法 V2(FFT)
阿新 • • 發佈:2018-11-08
【題目描述】
【思路】
FFT的基礎應用,把一個大數從低位到高位看成一個多項式,大數想乘看成多項式想乘,多項式的自變數
表示數字
,乘完進位即可得到結果
#include<bits/stdc++.h> using namespace std; const double PI=acos(-1.0); const int maxn=400005; struct Complex { double x,y; Complex(double _x=0.0, double _y = 0.0) { x = _x; y = _y; } Complex operator - (const Complex &b) const { return Complex(x - b.x, y - b.y); } Complex operator + (const Complex &b) const { return Complex(x + b.x, y + b.y); } Complex operator * (const Complex &b) const { return Complex(x * b.x - y * b.y, x * b.y + y * b.x); } }; void change(Complex y[], int len) { int i, j, k; for (i = 1, j = len / 2; i < len - 1; i++) { if (i < j) { swap(y[i], y[j]); } k = len / 2; while (j >= k) { j -= k; k /= 2; } if (j < k) { j += k; } } return ; } void fft(Complex y[], int len, int on) { change(y, len); for (int h = 2; h <= len; h <<= 1) { Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h)); for (int j = 0; j < len; j += h) { Complex w(1, 0); for (int k = j; k < j + h / 2; k++) { Complex u = y[k]; Complex t = w * y[k + h / 2]; y[k] = u + t; y[k + h / 2] = u - t; w = w * wn; } } } if (on == -1) { for (int i = 0; i < len; i++) { y[i].x /= len; } } } Complex a[maxn],b[maxn]; char s1[maxn],s2[maxn]; int ans[maxn]; int main() { scanf("%s%s",s1,s2); int len1=strlen(s1); int len2=strlen(s2); int len=1; while(len<2*len1 || len<2*len2) len<<=1; for(int i=0;i<len1;++i) a[i]=Complex(s1[len1-1-i]-'0',0); for(int i=len1;i<len;++i) a[i]=Complex(0,0); for(int i=0;i<len2;++i) b[i]=Complex(s2[len2-1-i]-'0',0); for(int i=len2;i<len;++i) b[i]=Complex(0,0); fft(a,len,1); fft(b,len,1); for(int i=0;i<len;++i) a[i]=a[i]*b[i]; fft(a,len,-1); for(int i=0;i<len;++i) ans[i]=(int)(a[i].x+0.5); for(int i=0;i<len-1;++i){ ans[i+1]+=ans[i]/10; ans[i]%=10; } while(!ans[len-1]) --len; for(int i=len-1;i>=0;--i) printf("%d",ans[i]); puts(""); return 0; }