【AtCoder】ARC099題解
C - Minimization
每次操作必然包含一個1
列舉第一次操作的位置計算兩邊即可
程式碼
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define space putchar(' ') #define enter putchar('\n') #define MAXN 100005 //#define ivorysi using namespace std; typedef long long int64; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) out(x / 10); putchar('0' + x % 10); } int N,K; int a[MAXN],pos[MAXN]; int C(int x) { return x % (K - 1) == 0 ? x / (K - 1) : x / (K - 1) + 1; } void Solve() { read(N);read(K); for(int i = 1 ; i <= N ; ++i) {read(a[i]);pos[a[i]] = i;} int ans = N; for(int i = 1 ; i <= N ; ++i) { if(i + K - 1 >= pos[1]) { ans = min(ans,C(i - 1) + C(N - min((i + K - 1),N)) + 1); } } out(ans);enter; } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
D - Snuke Numbers
我們對於N 只要能求出\(f(N + 1)\)(\(f(x)\)表示大於等於\(x\)的數中\(\frac{x}{S(x)}\)最小的那個)
那麼就能不斷找到下一個數了
怎麼求呢,我們可以認為一個可以被取到的數一定是x的一段字首,加上中間某個數修改,後面的所有數都改成9
因為999999...9999是一個合法的數,那麼可以認為\(f(x)\)的位數和\(x\)一定相同
如果我們找到一個數\(a\),它的第d位與x不同,且它後面不都是9,那麼我們可以把第d位-1,後面全部修改成9
所以我們找的數的數目有限,都找出來找最小的\(\frac{x}{S(x)}\)
程式碼
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define space putchar(' ') #define enter putchar('\n') #define MAXN 100005 //#define ivorysi using namespace std; typedef long long int64; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) out(x / 10); putchar('0' + x % 10); } int K,t[25],tot,cnt,s[10005]; int64 L[10005],p[25],b[25]; int S(int64 x) { int res = 0; while(x) {res += x % 10;x /= 10;} return res; } int64 f(int64 x) { tot = 0;cnt = 0;int64 h = x; while(h) {t[++tot] = h % 10;h /= 10;} int64 num = 0; for(int i = tot ; i >= 1 ; --i) { for(int j = t[i] ; j <= 9 ; ++j) { int64 tmp = num + j * b[i - 1] + p[i - 1]; if(tmp >= x) L[++cnt] = tmp; } num = num + t[i] * b[i - 1]; } for(int i = 1 ; i <= cnt ; ++i) s[i] = S(L[i]); int r = 1; for(int i = 2 ; i <= cnt ; ++i) { int64 h = L[i] * s[r] - L[r] * s[i]; if(h < 0) r = i; else if(h == 0 && L[i] < L[r]) r = i; } return L[r]; } void Solve() { read(K); int64 N = 1; p[1] = 9; for(int i = 2 ; i <= 16 ; ++i) p[i] = p[i - 1] * 10 + 9; b[0] = 1; for(int i = 1 ; i <= 16 ; ++i) b[i] = b[i - 1] * 10; while(K--) { out(N);enter; N = f(N + 1); } } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
E - Independence
反圖必然是個二分圖,不然則無解
我們希望知道哪些分的情況可以達到,就直接把一個二分圖的聯通塊拿出來,做分組揹包即可
程式碼
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define space putchar(' ')
#define enter putchar('\n')
#define MAXN 100005
#define mp make_pair
//#define ivorysi
using namespace std;
typedef long long int64;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
int N,M;
int g[705][705];
struct node {
int to,next;
}E[1000005];
int sumE,head[705],tot,col[705],que[705],qr;
pii conn[705];
bool f[2][705];
void add(int u,int v) {
E[++sumE].next = head[u];
E[sumE].to = v;
head[u] = sumE;
}
bool dfs(int u) {
if(col[u] == -1) col[u] = 0;
que[++qr] = u;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(col[v] == col[u]) return false;
else if(col[v] == -1) {
col[v] = col[u] ^ 1;
if(!dfs(v)) return false;
}
}
return true;
}
void Solve() {
read(N);read(M);
int u,v;
for(int i = 1 ; i <= M ; ++i) {
read(u);read(v);
g[u][v] = g[v][u] = 1;
}
for(int i = 1 ; i <= N ; ++i) {
for(int j = i + 1 ; j <= N ; ++j) {
if(!g[i][j]) {add(i,j);add(j,i);}
}
}
memset(col,-1,sizeof(col));
for(int i = 1 ; i <= N ; ++i) {
if(col[i] == -1) {
qr = 0;
if(!dfs(i)) {puts("-1");return;}
int cnt[2] = {0,0};
for(int j = 1 ; j <= qr ; ++j) cnt[col[que[j]]]++;
conn[++tot] = mp(cnt[0],cnt[1]);
}
}
int cur = 0;
f[0][0] = 1;
for(int i = 1 ; i <= tot ; ++i) {
memset(f[cur ^ 1],0,sizeof(f[cur ^ 1]));
for(int j = N ; j >= 0 ; --j) {
if(j >= conn[i].fi) f[cur ^ 1][j] |= f[cur][j - conn[i].fi];
if(j >= conn[i].se) f[cur ^ 1][j] |= f[cur][j - conn[i].se];
}
cur ^= 1;
}
int ans = N * N;
for(int i = 0 ; i <= N ; ++i) {
if(f[cur][i]) {
ans = min(i * (i - 1) / 2 + (N - i) * (N - i - 1) / 2,ans);
}
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
F - Eating Symbols Hard
一道神奇的題
我們把操作S構成的A陣列用一個多項式表示出來
\(t(S) = \sum_{i = -10^9}^{10^9} A_{i}X^{i}\)
如果往S前面新增一個字元的話
\(t<(S) = t(S)X^{-1}\)
\(t>(S) = t(S)X\)
\(t+(S) = t(S) + 1\)
\(t-(S) = t(S) - 1\)
那麼我們對於最終的序列求一個雜湊值c,如果一段區間操作後的結果和c一樣的話就有
\(t_{S_i}t_{S_{i + 1}}...t_{S_j}(0) = c\)
由於這些操作可逆,可以一層一層拆開
可以得到
\(t_{S_N}^{-1}...t_{S_i}^{-1}t_{S_i}t_{S_{i + 1}}...t_{S_j}(0) = t_{S_N}^{-1}...t_{S_i}^{-1}(c)\)
那麼我們可以得到
\(t_{S_N}^{-1}...t_{S_{j + 1}}^{-1} (0) = t_{S_N}^{-1}...t_{S_{i}}^{-1}(c)\)
這個字尾積可以線性處理出來,維護未知數前的係數即可
然後就是愉快的用map查詢了
那麼,衝突怎麼考慮?題解說是衝突的概率在2N/模數大小,讓用6個,然而我寫的不優美,T掉了,改成5個卡著時限A了,感覺用不上太多也是對的啊
程式碼
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <map>
#define enter putchar('\n')
#define space putchar(' ')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define pii pair<int,int>
#define eps 1e-7
#define MAXN 250005
#define MOD 999999137
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
typedef vector<int> poly;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int B[] = {0,823,727,401,271,571};
int InvB[10];
int f[8][MAXN],g[8][MAXN],N,h[8][MAXN];
char s[MAXN];
map<int,int> MK[8];
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
void update(int &x,char c,int id) {
if(c == '<') x = mul(x,InvB[id]);
else if(c == '>') x = mul(x,B[id]);
else if(c == '+') x = inc(x,1);
else x = inc(x,MOD - 1);
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
void Solve() {
for(int i = 1 ; i <= 5 ; ++i) InvB[i] = fpow(B[i],MOD - 2);
read(N);
scanf("%s",s + 1);
int c[10] = {0};
for(int k = 1 ; k <= 5 ; ++k) {
for(int i = N ; i >= 1 ; --i) {
update(c[k],s[i],k);
}
}
for(int k = 1 ; k <= 5 ; ++k) h[k][N + 1] = 1,g[k][N + 1] = c[k],MK[k][0] += 1;
int64 ans = 0;
for(int i = N ; i >= 1 ; --i) {
int add = N - i + 1;
for(int k = 1 ; k <= 5 ; ++k) {
if(s[i] == '<') {
g[k][i] = inc(g[k][i + 1],MOD - mul(h[k][i + 1],c[k]));
h[k][i] = mul(h[k][i + 1],B[k]);
g[k][i] = inc(g[k][i],mul(h[k][i],c[k]));
f[k][i] = f[k][i + 1];
}
else if(s[i] == '>') {
g[k][i] = inc(g[k][i + 1],MOD - mul(h[k][i + 1],c[k]));
h[k][i] = mul(h[k][i + 1],InvB[k]);
g[k][i] = inc(g[k][i],mul(h[k][i],c[k]));
f[k][i] = f[k][i + 1];
}
else if(s[i] == '+') {
h[k][i] = h[k][i + 1];
g[k][i] = inc(g[k][i + 1],MOD - h[k][i]);
f[k][i] = inc(f[k][i + 1],MOD - h[k][i]);
}
else {
h[k][i] = h[k][i + 1];
g[k][i] = inc(g[k][i + 1],h[k][i]);
f[k][i] = inc(f[k][i + 1],h[k][i]);
}
add = min(add,MK[k][g[k][i]]);
MK[k][f[k][i]] += 1;
}
ans += add;
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}