1. 程式人生 > >深入理解FIFO(包含有FIFO深度的解釋)

深入理解FIFO(包含有FIFO深度的解釋)

深入理解FIFO(包含有FIFO深度的解釋)

  FIFO:

  一、先入先出佇列(First Input First Output,FIFO)這是一種傳統的按序執行方法,先進入的指令先完成並引退,跟著才執行第二條指令。

  1.什麼是FIFO?

  FIFO是英文First In First Out 的縮寫,是一種先進先出的資料快取器,他與普通儲存器的區別是沒有外部讀寫地址線,這樣使用起來非常簡單,但缺點就是隻能順序寫入資料,順序的讀出資料,其資料地址由內部讀寫指標自動加1完成,不能像普通儲存器那樣可以由地址線決定讀取或寫入某個指定的地址。

  2.什麼情況下用FIFO?

  FIFO一般用於不同時鐘域之間的資料傳輸,比如FIFO的一端時AD資料採集,另一端時計算機的PCI匯流排,假設其AD採集的速率為16位 100K SPS,那麼每秒的資料量為100K×16bit=1.6Mbps,而PCI匯流排的速度為33MHz,匯流排寬度32bit,其最大傳輸速率為1056Mbps,在兩個不同的時鐘域間就可以採用FIFO來作為資料緩衝。另外對於不同寬度的資料介面也可以用FIFO,例如微控制器位8位資料輸出,而DSP可能是16位資料輸入,在微控制器與DSP連線時就可以使用FIFO來達到資料匹配的目的。

  3.FIFO的一些重要引數

  FIFO的寬度:也就是英文資料裡常看到的THE WIDTH,它只的是FIFO一次讀寫操作的資料位,就像MCU有8位和16位,ARM 32位等等,FIFO的寬度在單片成品IC中是固定的,也有可選擇的,如果用FPGA自己實現一個FIFO,其資料位,也就是寬度是可以自己定義的。

  FIFO的深度:THE DEEPTH,它指的是FIFO可以儲存多少個N位的資料(如果寬度為N)。如一個8位的FIFO,若深度為8,它可以儲存8個8位的資料,深度為12 ,就可以儲存12個8位的資料,FIFO的深度可大可小,個人認為FIFO深度的計算並無一個固定的公式。在FIFO實際工作中,其資料的滿/空標誌可以控制資料的繼續寫入或讀出。在一個具體的應用中也不可能由一些引數算數精確的所需FIFO深度為多少,這在寫速度大於讀速度的理想狀態下是可行的,但在實際中用到的FIFO深度往往要大於計算值。一般來說根據電路的具體情況,在兼顧系統性能和FIFO成本的情況下估算一個大概的寬度和深度就可以了。而對於寫速度慢於讀速度的應用,FIFO的深度要根據讀出的資料結構和讀出資料的由那些具體的要求來確定。

  滿標誌:FIFO已滿或將要滿時由FIFO的狀態電路送出的一個訊號,以阻止FIFO的寫操作繼續向FIFO中寫資料而造成溢位(overflow)。

  空標誌:FIFO已空或將要空時由FIFO的狀態電路送出的一個訊號,以阻止FIFO的讀操作繼續從FIFO中讀出資料而造成無效資料的讀出(underflow)。

  讀時鐘:讀操作所遵循的時鐘,在每個時鐘沿來臨時讀資料。

  寫時鐘:寫操作所遵循的時鐘,在每個時鐘沿來臨時寫資料。

  讀指標:指向下一個讀出地址。讀完後自動加1。

  寫指標:指向下一個要寫入的地址的,寫完自動加1。

  讀寫指標其實就是讀寫的地址,只不過這個地址不能任意選擇,而是連續的。

  4.FIFO的分類

  根均FIFO工作的時鐘域,可以將FIFO分為同步FIFO和非同步FIFO。同步FIFO是指讀時鐘和寫時鐘為同一個時鐘。在時鐘沿來臨時同時發生讀寫操作。非同步FIFO是指讀寫時鐘不一致,讀寫時鐘是互相獨立的。

  5.FIFO設計的難點

  FIFO設計的難點在於怎樣判斷FIFO的空/滿狀態。為了保證資料正確的寫入或讀出,而不發生益處或讀空的狀態出現,必須保證FIFO在滿的情況下,不能進行寫操作。在空的狀態下不能進行讀操作。怎樣判斷FIFO的滿/空就成了FIFO設計的核心問題。由於同步FIFO幾乎很少用到,這裡只描述非同步FIFO的空/滿標誌產生問題。

  在用到觸發器的設計中,不可避免的會遇到亞穩態的問題(關於亞穩態這裡不作介紹,可檢視相關資料)。在涉及到觸發器的電路中,亞穩態無法徹底消除,只能想辦法將其發生的概率將到最低。其中的一個方法就是使用格雷碼。格雷碼在相鄰的兩個碼元之間只由一位變換(二進位制碼在很多情況下是很多碼元在同時變化)。這就會避免計數器與時鐘同步的時候發生亞穩態現象。但是格雷碼有個缺點就是隻能定義2n的深度,而不能像二進位制碼那樣隨意的定義FIFO的深度,因為格雷碼必須迴圈一個2

n,否則就不能保證兩個相鄰碼元之間相差一位的條件,因此也就不是真正的各雷碼了。第二就是使用冗餘的觸發器,假設一個觸發器發生亞穩態的概率為P,那麼兩個及聯的觸發器發生亞穩態的概率就為P的平方。但這回導致延時的增加。亞穩態的發生會使得FIFO出現錯誤,讀/寫時鐘取樣的地址指標會與真實的值之間不同,這就導致寫入或讀出的地址錯誤。由於考慮延時的作用,空/滿標誌的產生並不一定出現在FIFO真的空/滿時才出現。可能FIFO還未空/滿時就出現了空/滿標誌。這並沒有什麼不好,只要保證FIFO不出現overflow
or underflow 就OK了。

  很多關於FIFO的文章其實討論的都是空/滿標誌的不同演算法問題。

  在Vijay A. Nebhrajani的《非同步FIFO結構》一文中,作者提出了兩個關於FIFO空/滿標誌的演算法。

  第一個演算法:構造一個指標寬度為N+1,深度為2^N位元組的FIFO(為便方比較將格雷碼指標轉換為二進位制指標)。當指標的二進位制碼中最高位不一致而其它N位都相等時,FIFO為滿(在Clifford E. Cummings的文章中以格雷碼錶示是前兩位均不相同,而後兩位LSB相同為滿,這與換成二進位制表示的MSB不同其他相同為滿是一樣的)。當指標完全相等時,FIFO為空。這也許不容易看出,舉個例子說明一下:一個深度為8位元組的FIFO怎樣工作(使用已轉換為二進位制的指標)。FIFO_WIDTH=8,FIFO_DEPTH=
2^N = 8,N = 3,指標寬度為N+1=4。起初rd_ptr_bin和wr_ptr_bin均為“0000”。此時FIFO中寫入8個位元組的資料。wr_ptr_bin =“1000”,rd_ptr_bin=“0000”。當然,這就是滿條件。現在,假設執行了8次的讀操作,使得rd_ptr_bin =“1000”,這就是空條件。另外的8次寫操作將使wr_ptr_bin 等於“0000”,但rd_ptr_bin 仍然等於“1000”,因此FIFO為滿條件。

  顯然起始指標無需為“0000”。假設它為“0100”,並且FIFO為空,那麼8個位元組會使wr_ptr_bin =“1100”,, rd_ptr_bin 仍然為“0100”。這又說明FIFO為滿。

  在Vijay A. Nebhrajani的這篇《非同步FIFO結構》文章中說明了怎樣運用格雷碼來設定空滿的條件,但沒有說清為什麼深度為8的FIFO其讀寫指標要用3+1位的格雷碼來實現,而3+1位的格雷碼可以表示16位的深度,而真實的FIFO只有8位,這是怎麼回事?而這個問題在Clifford E. Cummings的文章中得以解釋。三位格雷碼可表示8位的深度,若在加一位最為MSB,則這一位加其他三位組成的格雷碼並不代表新的地址,也就是說格雷碼的0100表示表示7,而1100仍然表示7,只不過格雷碼在經過一個以0位MSB的迴圈後進入一個以1為MSB的迴圈,然後又進入一個以0位MSB的迴圈,其他的三位碼仍然是格雷碼,但這就帶來一個問題,在0100的迴圈完成後,進入1000,他們之間有兩位發生了變換,而不是1位,所以增加一位MSB的做法使得該碼在兩處:01001000,1100
0000有兩位碼元發生變化,故該碼以不是真正的格雷碼。增加的MSB是為了實現空滿標誌的計算。Vijay
A. Nebhrajani的文章用格雷碼轉二進位制,再轉格雷碼的情況下提出空滿條件,僅過兩次轉換,而Clifford E. Cummings的文章中直接在格雷碼條件下得出空滿條件。其實二者是一樣的,只是實現方式不同罷了。

  第二種演算法:Clifford E. Cummings的文章中提到的STYLE #2。它將FIFO地址分成了4部分,每部分分別用高兩位的MSB 00 、01、 11、 10決定FIFO是否為going full 或going empty (即將滿或空)。如果寫指標的高兩位MSB小於讀指標的高兩位MSB則FIFO為“幾乎滿”,

  若寫指標的高兩位MSB大於讀指標的高兩位MSB則FIFO為“幾乎空”。

  在Vijay A. Nebhrajani的《非同步FIFO結構》第三部分的文章中也提到了一種方法,那就是方向標誌與門限。設定了FIFO容量的75%作為上限,設定FIFO容量的25%為下限。當方向標誌超過門限便輸出滿/空標誌,這與Clifford E. Cummings的文章中提到的STYLE #2可謂是異曲同工。他們都屬於保守的空滿判斷。其實這時輸出空滿標誌FIFO並不一定真的空/滿。

  說到此,我們已經清楚地看到,FIFO設計最關鍵的就是產生空/滿標誌的演算法的不同產生了不同的FIFO。但無論是精確的空滿還是保守的空滿都是為了保證FIFO工作的可靠。


  ====================================================================================================================

  二、先進先出法 (first in,first out ,FIFO)

  先進先出法是指根據先入庫先發出的原則,對於發出的存貨以先入庫存貨的單價計算髮出存貨成本的方法.採用這種方法的具體做法是:先按存貨的期初餘額的單價計算髮出的存貨的成本,領發完畢後,再按第一批入庫的存貨的單價計算,依此從前向後類推,計算髮出存貨和結存貨的成本.

  先進先出法是存貨的計價方法之一。它是根據先購入的商品先領用或發出的假定計價的。用先進先出法計算的期末存貨額,比較接近市價。

  先進先出法是以先購入的存貨先發出這樣一種存貨實物流轉假設為前提,對發出存貨進行計價的一種方法。採用這種方法,先購入的存貨成本在後購入的存貨成本之前轉出,據此確定發出存貨和期末存貨的成本