NNLearning階段性總結01
阿新 • • 發佈:2018-11-10
神經網路最基本的元素與計算流程:
基本的組網原則:
神經網路監督學習的基本步驟:
- 初始化權值係數
- 提取一個樣本輸入NN,比較網路輸出與正確輸出的誤差
- 調整權值係數,以減少上面誤差——調整的方法對應不同的學習規則
- 重複二三步,直到所有的樣本遍歷完畢或者誤差在可以容忍的範圍內
Delta規則:(一種更新權值係數的規則)
-
基於sigmoid函式的Delta規則:優勢,便於用於分類問題——啟用函式選擇
-
幾種常見權值更新策略:
-
三種更新策略下的程式碼演示
function W = DeltaSGD(W,X,D) alpha= 0.9; N = 4; for i = 1:N x = X(i,:)'; d = D(i); v = W*x; y = sigmoid(v); e = d - y; dy = y*(1-y)*e; dW = alpha*dy*x'; W = dW + W; end end
function W = DeltaBatch(W,X,D) alpha = 0.9; N = 4; dWSum = zeros(1,3); for i = 1:N x = X(i,:)'; d = D(i); v = W*x; y = sigmoid(v); e = d - y; dy = y*(1-y)*e; dW = alpha*dy*x'; dWSum = dWSum + dW; end dWavg = dWSum/N; W = W + dWavg; end
function W = DeltaMiniBatch(W,X,D) alpha= 0.9; N = 4; M = 2; for j = 1:(N/M) dWSum = zeros(1,3); for q = 1:M i = j*(M-1) + q; x = X(i,:)'; d = D(i); v = W*x; y = sigmoid(v); e = d - y; dy = y*(1-y)*e; dW = alpha*dy*x'; dWSum = dWSum + dW; end dWavg = dWSum/M; W = W + dWavg; end end
function y = sigmoid(x) y = 1/(1+exp(-x)); end
function D = DeltaTest() clear all;%清除所有變數 close all;%關閉所有開啟檔案 X = [0 0 1;0 1 1;1 0 1;1 1 1];% 輸入樣本 D = [0 0 1 1];%對應樣本的答案 % 初始化誤差平方和向量 E1 = zeros(1000,1); E2 = zeros(1000,1); E3 = zeros(1000,1); % 統一初始化權值係數 W1 = 2*rand(1,3) - 1; W2 = W1; W3 = W1; % 使用三種方法訓練1000輪 同時每一輪計算一次誤差平方 for epoch = 1:1000 %各自完成一輪訓練 W1 = DeltaSGD(W1,X,D); W2 = DeltaBatch(W2,X,D); W3 = DeltaMiniBatch(W3,X,D); % 計算這一輪結束後的誤差平方 N= 4; for i = 1:N %利用誤差計算方法計算誤差 % E1 x = X(i,:)'; d = D(i); v1 = W1*x; y1 = sigmoid(v1); E1(epoch) = E1(epoch) + (d - y1)^2; % E2 v2 = W2*x; y2 = sigmoid(v2); E2(epoch) = E2(epoch) + (d - y2)^2; % E3 v3 = W3*x; y3 = sigmoid(v3); E3(epoch) = E3(epoch) + (d - y3)^2; end end for i = 1:4 x = X(i,:)';d = D(i); v = W1*x; y = sigmoid(v) end % 繪製三種演算法策略的差異圖 plot(E1,'r');hold on plot(E2,'b:'); plot(E3,'k-'); xlabel('Epoch'); ylabel('Sum of Squares of Training Error'); legend('SGD',"Batch",'MiniBatch'); end