學習筆記(十二):推薦系統-隱語義模型
阿新 • • 發佈:2018-11-10
#程式碼摘自唐宇迪《推薦系統》視訊課程,資料集來自http://pan.baidu.com/s/1eS5VZ8Y中的“ml-1m"資料
from collections import deque from six import next import readers import tensorflow as tf import numpy as np import time np.random.seed(42) u_num = 6040 i_num = 3952 batch_size = 1000 dims = 5 max_epochs = 50 place_device = "/cpu:0" def get_data() df = readers.read_file("./ml-1m/ratings.dat",sep = "::") rows = len(df) df = df.iloc[np.random.permutation(rows)].reset_index(drop = True) split_index = int(rows*0.9) df_train = df[0:split_index] df_test = df[split_index:].reset_index(drop = True) return df_train,df_test def clip(x): return np.clip(x, 1.0, 5.0) def model(user_batch, item_batch, user_num, item_num, dim=5, device = "cpu:0"): with tf.device("/cpu:0"): with tf.variable_scope('lsi',reuse = True): bias_global = tf.get_variable("bias_global",shape=[]) w_bias_user = tf.get_variable("embd_bias_user",shape=[user_num]) w_bias_item = tf.get_variable("embd_bias_item",shape=[item_num]) bias_user = tf.nn.embedding_lookup(w_bias_user, user_batch, name="bias_user") bias_item = tf.nn.embedding_lookup(w_bias_item, item_batch, name="bias_item") w_user = tf.get_variable("embd_user",shape = [user_num,dim],initializer=tf.truncated_normal_initializer(stddev=0.02)) w_item = tf.get_variable("embd_item",shape = [item_num,dim],initializer=tf.truncated_normal_initializer(stddev=0.02)) embd_user = tf.nn.embedding_lookup(w_user,user_batch,name="embedding_user") embd_item = tf.nn.embedding_lookup(w_item,item_batch,name="embedding_item") with tf.device(device): infer = tf.reduce_sum(tf.multiplay(embd_user, embd_item),1) infer = tf.add(infer, bias_global) infer = tf.add(infer, bias_user) infer = tf.add(infer, bias_item, name = "svd_inference") regularizer = tf.add(tf.nn.l2_loss(embd_user), tf.nn.l2_loss(embd_item), name="svd_regularizer") return infer,regularizer def loss(infer, regularizer, rate_batch, learning_rate = 0.001, reg = 0.1, device="/cpu:0"): with tf.device(device): cost_l2 = tf.nn.l2_loss(tf.subtract(infer,rate_batch)) penalty = tf.constant(reg, dtype=tf.float32, shape=[],name = "l2") cost = tf.add(cost_l2, tf.multiply(regularizer,penalty)) train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) return cost, train_op df_train, df_test = get_data samples_per_batch = len(df_train) print(df_train["user"].head()) print(df_test["user"].head()) print(df_train["item"].head()) print(df_test["item"].head()) print(df_train["rate"].head()) print(df_test["rate"].head()) iter_train = readers.ShuffleIterator([df_train["user"],df_train["item"],df_train["rate"]],batch_size=batch_size) iter_test = readers.OneEpochIterator([df_train["user"],df_train["item"],df_train["rate"]],batch_size=-1) user_batch = tf.placeholder(tf.int32, shape=[None],name="id_user") item_batch = tf.placeholder(tf.int32, shape=[None],name="id_item") rate_batch = tf.placeholder(tf.float32, shape=[None]) infer, regularizer= model(user_batch,item_batch,user_num=u_num,item_num = i_num,dim=dims,device = place_device) _,train_op = loss(infer, regularizer,rate_batch,learning_rate=0.0010,reg=0.05,device=place_device) saver = tf.train.Saver() init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) print("%s\t%s\t%s\t%s" % ("Epoch","Train Error","Val Error", "Elapsed Time")) errors = deque(maxlen = samples_per_batch) start = time.time() for i in range(max_epochs*samples_per_batch): users, items, rates = next(iter_train) _,pred_batch = sess.run([train_op,infer],feed_dict={user_batch:users,item_batch:items,rate_batch:rates}) pred_batch = clip(pred_batch) errors.append(np.power(pred_batch-rates,2)) if i % samples_per_batch == 0: train_err = np.sqrt(np.mean(errors)) test_err2 = np.array([]) for users, items, rates in iter_test: pred_batch=sess.run(infer, feed_dict={user_batch: users, item_batch:items}) pred_batch = clip(pred_batch) test_err2 = np.append(test_err2, np.power(pred_batch-rates,2)) end = time.time() #print("%02d\t%.3f\t\t%.3f\t\t%.3f secs" %(i//sample_per_batch,train_err)) start = end saver.save(sess, './save/')