tensorflow基本教程1
阿新 • • 發佈:2018-11-11
import tensorflow as tf
import numpy as np
#creat data
x_data=np.random.rand(100).astype(np.float32)#定義資料是float32
y_data=x_data*0.1+0.3
###creat tensorflow structure start
#初始權重和偏置
Weights=tf.Variable(tf.random_uniform([1],-0.1,1.0))#形狀和範圍
biases=tf.Variable(tf.zeros([1]))
y=Weights*x_data+biases
loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
init=tf.initialize_all_variables()
###creat tensorflow structure end
sess=tf.Session()
sess.run(init)#very important
for step in range(201):
sess.run(train)
if step%20==0:
print(step,sess.run(Weights),sess.run(biases))
1.資料生成
2.引數初始化
3.訓練