1. 程式人生 > >python視覺化互動庫dash

python視覺化互動庫dash

R有shiny,應該是非常好用的,python像shiny的互動視覺化的庫不多,dash其中之一,簡單實用,但整體似乎還不如shiny。

1安裝

pip install dash

pip install dash-renderer

pip install dash-html-components

pip install dash-core-components

2官方例項

#!/user/bin/env python
#-*- coding:utf-8 -*-
import dash
import dash_core_components as dcc
import
dash_html_components as html import pandas as pd import plotly.graph_objs as go app = dash.Dash() df = pd.read_csv( 'https://gist.githubusercontent.com/chriddyp/' 'cb5392c35661370d95f300086accea51/raw/' '8e0768211f6b747c0db42a9ce9a0937dafcbd8b2/' 'indicators.csv') available_indicators = df['Indicator Name'
].unique() app.layout = html.Div([ html.Div([ html.Div([ dcc.Dropdown( id='crossfilter-xaxis-column', options=[{'label': i, 'value': i} for i in available_indicators], value='Fertility rate, total (births per woman)' ), dcc.RadioItems( id='crossfilter-xaxis-type'
, options=[{'label': i, 'value': i} for i in ['Linear', 'Log']], value='Linear', labelStyle={'display': 'inline-block'} ) ], style={'width': '49%', 'display': 'inline-block'}), html.Div([ dcc.Dropdown( id='crossfilter-yaxis-column', options=[{'label': i, 'value': i} for i in available_indicators], value='Life expectancy at birth, total (years)' ), dcc.RadioItems( id='crossfilter-yaxis-type', options=[{'label': i, 'value': i} for i in ['Linear', 'Log']], value='Linear', labelStyle={'display': 'inline-block'} ) ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'}) ], style={ 'borderBottom': 'thin lightgrey solid', 'backgroundColor': 'rgb(250, 250, 250)', 'padding': '10px 5px' }), html.Div([ dcc.Graph( id='crossfilter-indicator-scatter', hoverData={'points': [{'customdata': 'Japan'}]} ) ], style={'width': '49%', 'display': 'inline-block', 'padding': '0 20'}), html.Div([ dcc.Graph(id='x-time-series'), dcc.Graph(id='y-time-series'), ], style={'display': 'inline-block', 'width': '49%'}), html.Div(dcc.Slider( id='crossfilter-year--slider', min=df['Year'].min(), max=df['Year'].max(), value=df['Year'].max(), step=None, marks={str(year): str(year) for year in df['Year'].unique()} ), style={'width': '49%', 'padding': '0px 20px 20px 20px'}) ]) @app.callback( dash.dependencies.Output('crossfilter-indicator-scatter', 'figure'), [dash.dependencies.Input('crossfilter-xaxis-column', 'value'), dash.dependencies.Input('crossfilter-yaxis-column', 'value'), dash.dependencies.Input('crossfilter-xaxis-type', 'value'), dash.dependencies.Input('crossfilter-yaxis-type', 'value'), dash.dependencies.Input('crossfilter-year--slider', 'value')]) def update_graph(xaxis_column_name, yaxis_column_name, xaxis_type, yaxis_type, year_value): dff = df[df['Year'] == year_value] return { 'data': [go.Scatter( x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'], y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'], text=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'], customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'], mode='markers', marker={ 'size': 15, 'opacity': 0.5, 'line': {'width': 0.5, 'color': 'white'} } )], 'layout': go.Layout( xaxis={ 'title': xaxis_column_name, 'type': 'linear' if xaxis_type == 'Linear' else 'log' }, yaxis={ 'title': yaxis_column_name, 'type': 'linear' if yaxis_type == 'Linear' else 'log' }, margin={'l': 40, 'b': 30, 't': 10, 'r': 0}, height=450, hovermode='closest' ) } def create_time_series(dff, axis_type, title): return { 'data': [go.Scatter( x=dff['Year'], y=dff['Value'], mode='lines+markers' )], 'layout': { 'height': 225, 'margin': {'l': 20, 'b': 30, 'r': 10, 't': 10}, 'annotations': [{ 'x': 0, 'y': 0.85, 'xanchor': 'left', 'yanchor': 'bottom', 'xref': 'paper', 'yref': 'paper', 'showarrow': False, 'align': 'left', 'bgcolor': 'rgba(255, 255, 255, 0.5)', 'text': title }], 'yaxis': {'type': 'linear' if axis_type == 'Linear' else 'log'}, 'xaxis': {'showgrid': False} } } @app.callback( dash.dependencies.Output('x-time-series', 'figure'), [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'), dash.dependencies.Input('crossfilter-xaxis-column', 'value'), dash.dependencies.Input('crossfilter-xaxis-type', 'value')]) def update_y_timeseries(hoverData, xaxis_column_name, axis_type): country_name = hoverData['points'][0]['customdata'] dff = df[df['Country Name'] == country_name] dff = dff[dff['Indicator Name'] == xaxis_column_name] title = '<b>{}</b><br>{}'.format(country_name, xaxis_column_name) return create_time_series(dff, axis_type, title) @app.callback( dash.dependencies.Output('y-time-series', 'figure'), [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'), dash.dependencies.Input('crossfilter-yaxis-column', 'value'), dash.dependencies.Input('crossfilter-yaxis-type', 'value')]) def update_x_timeseries(hoverData, yaxis_column_name, axis_type): dff = df[df['Country Name'] == hoverData['points'][0]['customdata']] dff = dff[dff['Indicator Name'] == yaxis_column_name] return create_time_series(dff, axis_type, yaxis_column_name) if __name__ == '__main__': app.run_server()

打印出得結果:

 * Serving Flask app "dash-1" (lazy loading)
 * Environment: production
   WARNING: Do not use the development server in a production environment.
   Use a production WSGI server instead.
 * Debug mode: off
 * Running on http://127.0.0.1:8050/ (Press CTRL+C to quit)

3結果

點選連結即可,互動的頁面
這裡寫圖片描述