1. 程式人生 > >統計每一個使用者(手機號)所耗費的上行流量,下行流量,總流量

統計每一個使用者(手機號)所耗費的上行流量,下行流量,總流量

假設從資料運營商可以獲取使用者(通過手機號來區分)的上網資訊:

1363157985066 	13726230503	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com		24	27	2481	24681	200
1363157995052 	13826544101	5C-0E-8B-C7-F1-E0:CMCC	120.197.40.4			4	0	264	0	200
1363157991076 	13926435656	20-10-7A-28-CC-0A:CMCC	120.196.100.99			2	4	132	1512	200
1363154400022 	13926251106	5C-0E-8B-8B-B1-50:CMCC	120.197.40.4			4	0	240	0	200
1363157993044 	18211575961	94-71-AC-CD-E6-18:CMCC-EASY	120.196.100.99	iface.qiyi.com	視訊網站	15	12	1527	2106	200
1363157995074 	84138413	5C-0E-8B-8C-E8-20:7DaysInn	120.197.40.4	122.72.52.12		20	16	4116	1432	200
1363157993055 	13560439658	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			18	15	1116	954	200
1363157995033 	15920133257	5C-0E-8B-C7-BA-20:CMCC	120.197.40.4	sug.so.360.cn	資訊保安	20	20	3156	2936	200
1363157983019 	13719199419	68-A1-B7-03-07-B1:CMCC-EASY	120.196.100.82			4	0	240	0	200
1363157984041 	13660577991	5C-0E-8B-92-5C-20:CMCC-EASY	120.197.40.4	s19.cnzz.com	站點統計	24	9	6960	690	200
1363157973098 	15013685858	5C-0E-8B-C7-F7-90:CMCC	120.197.40.4	rank.ie.sogou.com	搜尋引擎	28	27	3659	3538	200
1363157986029 	15989002119	E8-99-C4-4E-93-E0:CMCC-EASY	120.196.100.99	www.umeng.com	站點統計	3	3	1938	180	200
1363157992093 	13560439658	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			15	9	918	4938	200
1363157986041 	13480253104	5C-0E-8B-C7-FC-80:CMCC-EASY	120.197.40.4			3	3	180	180	200
1363157984040 	13602846565	5C-0E-8B-8B-B6-00:CMCC	120.197.40.4	2052.flash2-http.qq.com	綜合門戶	15	12	1938	2910	200
1363157995093 	13922314466	00-FD-07-A2-EC-BA:CMCC	120.196.100.82	img.qfc.cn		12	12	3008	3720	200
1363157982040 	13502468823	5C-0A-5B-6A-0B-D4:CMCC-EASY	120.196.100.99	y0.ifengimg.com	綜合門戶	57	102	7335	110349	200
1363157986072 	18320173382	84-25-DB-4F-10-1A:CMCC-EASY	120.196.100.99	input.shouji.sogou.com	搜尋引擎	21	18	9531	2412	200
1363157990043 	13925057413	00-1F-64-E1-E6-9A:CMCC	120.196.100.55	t3.baidu.com	搜尋引擎	69	63	11058	48243	200
1363157988072 	13760778710	00-FD-07-A4-7B-08:CMCC	120.196.100.82			2	2	120	120	200
1363157985066 	13726238888	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com		24	27	2481	24681	200
1363157993055 	13560436666	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			18	15	1116	954	200

上面的這些資料,第二列的資料代表的是手機號(通過手機號來區分使用者),從右邊數,右邊第三列代表上行流量,右邊第二列代表下行流量

我們來寫MapReduce程式來統計每個手機號的上行流量,下行流量,以及總流量,由於我們需要的是三個資料,所以我們可以將這三個資料封裝成一個Bean,這個Bean必須要實現hadoop的序列化介面.

package com.thp.bigdata.flowsum;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;

public class FlowBean implements Writable {

	
	private long upFlow;  // 上行流量
	private long downFlow;  // 下行流量
	private long sumFlow;   // 總流量
	
	// 反序列化時,需要反射呼叫空參建構函式,所以要顯式定義一個
	public FlowBean() {}

	public FlowBean(long upFlow, long downFlow) {
		this.upFlow = upFlow;
		this.downFlow = downFlow;
		this.sumFlow = upFlow + downFlow;
	}
	public long getUpFlow() {
		return upFlow;
	}

	public void setUpFlow(long upFlow) {
		this.upFlow = upFlow;
	}

	public long getDownFlow() {
		return downFlow;
	}

	public void setDownFlow(long downFlow) {
		this.downFlow = downFlow;
	}

	public long getSumFlow() {
		return sumFlow;
	}

	public void setSumFlow(long sumFlow) {
		this.sumFlow = sumFlow;
	}

	/**
	 * 序列化方法
	 */
	@Override
	public void write(DataOutput out) throws IOException {
		out.writeLong(upFlow);
		out.writeLong(downFlow);
		out.writeLong(sumFlow);
	}
	
	/**
	 * 反序列化方法:
	 * 注意 : 反序列化的順序跟序列化的順序完全一致
	 */
	@Override
	public void readFields(DataInput in) throws IOException {
		upFlow = in.readLong();
		downFlow = in.readLong();
		sumFlow = in.readLong();
	}

	// 輸出列印的時候呼叫的是toString() 方法
	@Override
	public String toString() {
		return upFlow + "\t" + downFlow + "\t" + sumFlow;
	}
}

主程式,將Map task 跟 reduce task 全部寫在同一個類中,作為靜態內部類

package com.thp.bigdata.flowsum;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowCount {

	
	static class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
		@Override
		protected void map(LongWritable key, Text value, Context context)
				throws IOException, InterruptedException {
			// 將一行內容轉換成string
			String line = value.toString();
			// 切分欄位
			String[] fields = line.split("\t");
			// 取出手機號
			String phoneNumber = fields[1];
			// 取出上行流量和下行流量
			long upFlow = Long.parseLong(fields[fields.length - 3]);
			long downFlow = Long.parseLong(fields[fields.length - 2]);
			context.write(new Text(phoneNumber), new FlowBean(upFlow, downFlow));
		}
	}
 	
	
	static class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
		@Override
		protected void reduce(Text key, Iterable<FlowBean> values, Context context)
				throws IOException, InterruptedException {
			long sum_upFlow = 0;
			long sum_downFlow = 0;
			// 遍歷所有的bean,將其中的上行流量,下行流量分別累加
			for(FlowBean bean : values) {
				sum_upFlow += bean.getUpFlow();
				sum_downFlow += bean.getDownFlow();
			}
			FlowBean resultBean = new FlowBean(sum_upFlow, sum_downFlow);
			context.write(key, resultBean);
		}
	}
	
	
	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);
		job.setJarByClass(FlowCount.class);
		job.setMapperClass(FlowCountMapper.class);
		job.setReducerClass(FlowCountReducer.class);
		
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(FlowBean.class);
		
		
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(FlowBean.class);
		
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		boolean res = job.waitForCompletion(true);
		System.exit(res ? 0 : 1);
		
	}
	
}

將資料上傳到hadoop的hdfs檔案系統
在這裡插入圖片描述

將寫的整個專案打成jar包放在hadoop叢集上.
在這裡插入圖片描述

hadoop jar mapReduce.jar com.thp.bigdata.flowsum.FlowCount /flowsum/input /flowsum/output

在這裡插入圖片描述

最後生成的檔案:
在這裡插入圖片描述

MapTask並行度決定機制:
maptask的並行度決定map階段的任務處理併發度,進而影響到整個job的處理速度,那麼,maptask並行例項是否越多越好呢?其並行度又是如何決定呢?