1. 程式人生 > >輸出n以內互質數對 CodeForce1009D

輸出n以內互質數對 CodeForce1009D

D. Relatively Prime Graph

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Let's call an undirected graph G=(V,E)G=(V,E) relatively prime if and only if for each edge (v,u)∈E(v,u)∈E  GCD(v,u)=1GCD(v,u)=1 (the greatest common divisor of vv and uu is 11). If there is no edge between some pair of vertices vv and uu then the value of GCD(v,u)GCD(v,u) doesn't matter. The vertices are numbered from 11 to |V||V|.

Construct a relatively prime graph with nn vertices and mm edges such that it is connected and it contains neither self-loops nor multiple edges.

If there exists no valid graph with the given number of vertices and edges then output "Impossible".

If there are multiple answers then print any of them.

Input

The only line contains two integers nn and mm (1≤n,m≤1051≤n,m≤105) — the number of vertices and the number of edges.

Output

If there exists no valid graph with the given number of vertices and edges then output "Impossible".

Otherwise print the answer in the following format:

The first line should contain the word "Possible".

The ii-th of the next mm lines should contain the ii-th edge (vi,ui)(vi,ui) of the resulting graph (1≤vi,ui≤n,vi≠ui1≤vi,ui≤n,vi≠ui). For each pair (v,u)(v,u)there can be no more pairs (v,u)(v,u) or (u,v)(u,v). The vertices are numbered from 11 to nn.

If there are multiple answers then print any of them.

Examples

input

Copy

5 6

output

Copy

Possible
2 5
3 2
5 1
3 4
4 1
5 4

input

Copy

6 12

output

Copy

Impossible

Note

Here is the representation of the graph from the first example:

 

 

#include <bits/stdc++.h>
#define ll long long 
using namespace std;
const int mn = 1e5 + 10;

int u[mn], v[mn];
int main()
{
    int n, m;
    scanf("%d %d", &n, &m);
    
    /// 相鄰兩數互質
    if (n - 1 > m)  // 不連通
    {
        printf("Impossible\n");
        return 0;
    }
    
    for (int i = 1; i < n; i++)
        u[i] = i, v[i] = i + 1;
    
    int cnt = n - 1;
    for (int i = 3; i <= n && cnt != m; i++)
    {
        for (int j = 1; j <= i - 2 && cnt != m; j++)
        {
            if (gcd(i, j) == 1)
            {
                cnt++;
                u[cnt] = i, v[cnt] = j;
            }
        }
    }
    
    if (cnt < m)
        printf("Impossible\n");
    else 
    {
        printf("Possible\n");
        for (int i = 1; i <= m; i++)
            printf("%d %d\n", u[i], v[i]);
    }
    
    return 0;
}