洛谷4219 BJOI2014大融合(LCT維護子樹資訊)
阿新 • • 發佈:2018-11-25
QWQ
這個題目是LCT維護子樹資訊的經典應用
根據題目資訊來看,對於一個這條邊的兩個端點各自的 乘起來,不過這個應該算呢?
我們可以考慮在LCT上多維護一個
表示
的虛子樹的子樹和,然後維護
表示
的虛+實子樹之和。
那麼對於一個點 ,他在原樹上的字數大小就應該是
這是個經典套路!
對於這個題來說,我們可以通過
,然後
就等於
這個地方可以理解為,x的虛兒子是以x為根,不經過
這條邊的 所有子樹和,正好符合題目要求,y也是同理。
當然,也存在別的計算方法:我們 ,然後直接用x的子樹大小,乘上y的子樹大小減去x的。也是可以的。道理和上面的類似
直接上程式碼
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 2e5+1e2;
int size[maxn];
int xv[maxn];
int ch[maxn][3];
int fa[maxn];
int n,m,cnt;
int st[maxn];
int rev[maxn];
int son(int x)
{
if (ch[fa[x]][0]==x) return 0;
else return 1;
}
bool notroot(int x)
{
return ch[fa[x]][0]==x || ch[fa[x]][1]==x;
}
void update(int x)
{
size[x]=size[ch[x][0]]+size[ch[x][1]]+xv[x]+1;
}
void reverse(int x)
{
swap(ch[x][0],ch[x][1]);
rev[x]^=1;
}
void pushdown(int x)
{
if (rev[x])
{
if (ch[x][0]) reverse(ch[x][0]);
if (ch[x][1]) reverse(ch[x][1]);
rev[x]=0;
}
}
void rotate(int x)
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if (notroot(y)) ch[z][c]=x;
fa[x]=z;
ch[y][b]=ch[x][!b];
fa[ch[x][!b]]=y;
ch[x][!b]=y;
fa[y]=x;
update(y);
update(x);
}
void splay(int x)
{
int y=x,cnt=0;
st[++cnt]=y;
while (notroot(y)) y=fa[y],st[++cnt]=y;
while (cnt) pushdown(st[cnt--]);
while (notroot(x))
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if (notroot(y))
{
if (b==c) rotate(y);
else rotate(x);
}
rotate(x);
}
update(x);
}
void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
xv[x]+=size[ch[x][1]];
ch[x][1]=y;
xv[x]-=size[y];
}
}
void makeroot(int x)
{
access(x);
splay(x);
reverse(x);
}
int findroot(int x)
{
access(x);
splay(x);
while (ch[x][0])
{
pushdown(x);
x=ch[x][0];
}
return x;
}
void split(int x,int y)
{
makeroot(x);
access(y);
splay(y);
}
void link(int x,int y)
{
split(x,y);
if (findroot(y)!=x)
{
fa[x]=y;
xv[y]+=size[x];
}
update(y);
}
int q;
int main()
{
n=read(),q=read();
for (int i=1;i<=q;i++)
{
char s[10];
scanf("%s",s+1);
if (s[1]=='A')
{
int x=read(),y=read();
link(x,y);
}
else
{
int x=read(),y=read();
split(x,y);
printf("%lld\n",1ll*(xv[x]+1)*(xv[y]+1));
}
}
return 0;
}