1. 程式人生 > >numpy中的norm用法

numpy中的norm用法

nan threshold cal use imp ive rev http blank

  np.linalg.norm() computes the norm of a NumPy array according to an order, ord, which specifies the metric by which the norm takes. For example, if we are given an array

      [??1,...,????]

  with numbers ????xi then we can compute the Frobenius Norm or more commonly called the 2-norm by doing:

技術分享圖片

In NumPy you can also use np.linalg.norm() to compute the norm of a matrix, or a matrix‘s columns or rows, treating each as their own array.

  example:

 1 import numpy as np  
 2 from numpy.linalg import norm
 3 np.set_printoptions(threshold=nan)
 4 
 5 a1 = np.array([1,2,3])
 6 a2 = np.array([0,0,-3])
7 testa = np.array([[ 1.76405235, 0.40015721, 0.97873798], 8 [ 2.2408932 , 2.2677152 , -0.57712067], 9 [ 0.95008842, 0.79873121, -0.68033952], 10 [ 0.4105985 , 0.55464207, 0.77393398]]) 11 12 testb = np.array([[ 1.76405235, 0.40015721, 0.97873798], 13 [ 2.2408932 , 2.2677152 , -0.57712067],
14 [ 0.95008842, 0.79873121, -0.68033952], 15 [ 0.4105985 , 0.55464207, 0.77393398]]) 16 dist=lambda x, y: norm(x - y, ord=1) 17 18 print np.linalg.norm([2,-1,3,-4], np.inf) # returns 2, 19 20 print np.linalg.norm(a1 - a2, ord=1) # returns 2,

Refer:

1 https://plot.ly/numpy/norm/

numpy中的norm用法