1. 程式人生 > >多項式模板整理

多項式模板整理

多項式求逆 簡單的 pac 積分 常用 n) code max text

多項式乘法

FFT模板

時間復雜度\(O(n\log n)\)

模板:

void FFT(Z *a,int x,int K){
    static int rev[N],lst;
    int n=(1<<x);
    if(n!=lst){
        for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
        lst=n;
    }
    for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1){
        int tmp=i<<1;
        Z wn(cos(pi/i),sin(pi*K/i));
        for(int j=0;j<n;j+=tmp){
            Z w(1,0);
            for(int k=0;k<i;k++,w=w*wn){
                Z x=a[j+k],y=w*a[i+j+k];
                a[j+k]=x+y;a[i+j+k]=x-y;
            }
        }
    }
    if(K==-1)for(int i=0;i<n;i++)a[i]/=n;
}

例題:

【Loj108】多項式乘法

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<complex>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}

typedef complex<double> Z;
const double pi=M_PI;

int rev[N];
void FFT(Z *a,int x,int K){
    static int rev[N],lst;
    int n=(1<<x);
    if(n!=lst){
        for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
        lst=n;
    }
    for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1){
        int tmp=i<<1;
        Z wn(cos(pi/i),sin(pi*K/i));
        for(int j=0;j<n;j+=tmp){
            Z w(1,0);
            for(int k=0;k<i;k++,w=w*wn){
                Z x=a[j+k],y=w*a[i+j+k];
                a[j+k]=x+y;a[i+j+k]=x-y;
            }
        }
    }
    if(K==-1)for(int i=0;i<n;i++)a[i]/=n;
}
Z a[N],b[N];
int main(){
    int n=Getint(),m=Getint();
    for(int i=0;i<=n;i++)a[i].real()=Getint();
    for(int i=0;i<=m;i++)b[i].real()=Getint();
    
    int x=ceil(log2(n+m+1));
    for(int i=0;i<(1<<x);i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
    
    FFT(a,x,1),FFT(b,x,1);
    for(int i=0;i<(1<<x);i++)a[i]*=b[i];
    FFT(a,x,-1);
    for(int i=0;i<=n+m;i++)cout<<(int)(a[i].real()+0.5)<<' ';
    return 0;
}

NTT模板

時間復雜度\(O(n\log n)\)

模板:

void NTT(int *a,int x,int K){
    static int rev[N],lst;
    int n=(1<<x);
    if(n!=lst){
        for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
        lst=n;
    }
    for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1){
        int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
        if(K==-1)wn=ksm(wn,mod-2); 
        for(int j=0;j<n;j+=tmp){
            int w=1;
            for(int k=0;k<i;k++,w=(LL)w*wn%mod){
                int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
                a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
            }
        }
    }
    if(K==-1){
        int inv=ksm(n,mod-2);
        for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
    }
}

例題:

【Loj108】多項式乘法

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<complex>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
    int ret=1;
    while(k){
        if(k&1)ret=1ll*ret*x%mod;
        x=1ll*x*x%mod,k>>=1;
    }
    return ret;
} 
void NTT(int *a,int x,int K){
    static int rev[N],lst;
    int n=(1<<x);
    if(n!=lst){
        for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
        lst=n;
    }
    for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1){
        int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
        if(K==-1)wn=ksm(wn,mod-2); 
        for(int j=0;j<n;j+=tmp){
            int w=1;
            for(int k=0;k<i;k++,w=(LL)w*wn%mod){
                int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
                a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
            }
        }
    }
    if(K==-1){
        int inv=ksm(n,mod-2);
        for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
    }
}
int a[N],b[N];
int main(){
    int n=Getint(),m=Getint();
    for(int i=0;i<=n;i++)a[i]=Getint();
    for(int i=0;i<=m;i++)b[i]=Getint();
    
    int x=ceil(log2(n+m+1));
    NTT(a,x,1),NTT(b,x,1);
    for(int i=0;i<(1<<x);i++)a[i]=(LL)a[i]*b[i]%mod;
    NTT(a,x,-1);
    for(int i=0;i<=n+m;i++)cout<<a[i]<<' ';
    return 0;
}

常用的模數及其原根

r * 2 ^ k + 1 r k g
3 1 1 2
5 1 2 2
17 1 4 3
97 3 5 5
193 3 6 5
257 1 8 3
7681 15 9 17
12289 3 12 11
40961 5 13 3
65537 1 16 3
786433 3 18 10
5767169 11 19 3
7340033 7 20 3
23068673 11 21 3
104857601 25 22 3
167772161 5 25 3
469762049 7 26 3
998244353 119 23 3
1004535809 479 21 3
2013265921 15 27 31
2281701377 17 27 3
3221225473 3 30 5
75161927681 35 31 3
77309411329 9 33 7
206158430209 3 36 22
2061584302081 15 37 7

多項式求逆

前置知識:多項式乘法。

一個多項式有沒有逆元完全取決於他的常數項有沒有逆元。

時間復雜度\(O(n\log n)\)

模板:

void Inv(int *f,int *g,int len){
    static int A[N];
    if(len==1)return g[0]=ksm(f[0],mod-2),void();
    Inv(f,g,len>>1),copy(f,f+len,A);
    int x=log2(len<<1),n=1<<x;
    fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
    NTT(A,x,1),NTT(g,x,1);
    for(int i=0;i<(1<<x);i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
    NTT(g,x,-1),fill(g+len,g+n,0); 
}

例題

【LGOJ4238】多項式求逆

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
    int ret=1;
    while(k){
        if(k&1)ret=(LL)ret*x%mod;
        x=(LL)x*x%mod;
        k>>=1; 
    }
    return ret;
}
void NTT(int *a,int x,int K){
    static int rev[N],lst;
    int n=(1<<x);
    if(n!=lst){
        for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
        lst=n;
    }
    for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1){
        int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
        if(K==-1)wn=ksm(wn,mod-2); 
        for(int j=0;j<n;j+=tmp){
            int w=1;
            for(int k=0;k<i;k++,w=(LL)w*wn%mod){
                int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
                a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
            }
        }
    }
    if(K==-1){
        int inv=ksm(n,mod-2);
        for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
    }
}
void Inv(int *f,int *g,int len){
    static int A[N];
    if(len==1)return g[0]=ksm(f[0],mod-2),void();
    Inv(f,g,len>>1),copy(f,f+len,A);
    int x=log2(len<<1),n=1<<x;
    fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
    NTT(A,x,1),NTT(g,x,1);
    for(int i=0;i<(1<<x);i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
    NTT(g,x,-1),fill(g+len,g+n,0); 
}
int f[N],g[N];
int main(){
    int n=Getint(),len=ceil(log2(n));
    for(int i=0;i<n;i++)f[i]=(Getint()%mod+mod)%mod;
    Inv(f,g,1<<len);
    for(int i=0;i<n;i++)cout<<g[i]<<' ';
    return 0;
}

多項式開根

前置知識:多項式求逆。

模板:

const int inv2=(mod+1)/2;
void Sqrt(int *f,int *g,int len){
    static int A[N],B[N];
    if(len==1)return g[0]=sqrt(f[0]),void();
    Sqrt(f,g,len>>1),Inv(g,B,len);
    copy(f,f+len,A);
    int x=log2(len<<1),n=1<<x;
    fill(A+len,A+n,0),fill(B+len,B+n,0),fill(g+(len>>1),g+n,0);
    NTT(A,x,1),NTT(B,x,1),NTT(g,x,1);
    for(int i=0;i<n;i++)g[i]=(g[i]+(LL)A[i]*B[i]%mod)%mod*inv2%mod;
    NTT(g,x,-1),fill(g+len,g+n,0);
}

應用:

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
    int ret=1;
    while(k){
        if(k&1)ret=(LL)ret*x%mod;
        x=(LL)x*x%mod;
        k>>=1; 
    }
    return ret;
}
void NTT(int *a,int x,int K){
    static int rev[N],lst;
    int n=(1<<x);
    if(n!=lst){
        for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
        lst=n;
    }
    for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1){
        int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
        if(K==-1)wn=ksm(wn,mod-2); 
        for(int j=0;j<n;j+=tmp){
            int w=1;
            for(int k=0;k<i;k++,w=(LL)w*wn%mod){
                int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
                a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
            }
        }
    }
    if(K==-1){
        int inv=ksm(n,mod-2);
        for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
    }
}
void Inv(int *f,int *g,int len){
    static int A[N];
    if(len==1)return g[0]=ksm(f[0],mod-2),void();
    Inv(f,g,len>>1),copy(f,f+len,A);
    int x=log2(len<<1),n=1<<x;
    fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
    NTT(A,x,1),NTT(g,x,1);
    for(int i=0;i<(1<<x);i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
    NTT(g,x,-1),fill(g+len,g+n,0); 
}
const int inv2=(mod+1)/2;
void Sqrt(int *f,int *g,int len){
    static int A[N],B[N];
    if(len==1)return g[0]=sqrt(f[0]),void();
    Sqrt(f,g,len>>1),Inv(g,B,len);
    copy(f,f+len,A);
    int x=log2(len<<1),n=1<<x;
    fill(A+len,A+n,0),fill(B+len,B+n,0),fill(g+(len>>1),g+n,0);
    NTT(A,x,1),NTT(B,x,1),NTT(g,x,1);
    for(int i=0;i<n;i++)g[i]=(g[i]+(LL)A[i]*B[i]%mod)%mod*inv2%mod;
    NTT(g,x,-1),fill(g+len,g+n,0);
}
int f[N],g[N];
int main(){
    int n=Getint();
    for(int i=0;i<n;i++)f[i]=Getint();
    int len=ceil(log2(n));
    Sqrt(f,g,1<<len);
    for(int i=0;i<n;i++)cout<<g[i]<<' '; 
    return 0;
}

多項式求導

已知多項式\(A(x)\),求:
\[ \frac {dA(x)}{dx} \]

思路:多項式的每一項都是個簡單的冪函數,那麽直接對每一項求導就可以了。

void Der(int *f,int *g,int len){
    for(int i=0;i<len;i++)g[i]=(LL)f[i+1]*(i+1)%mod;
    g[len-1]=0;
}

多項式求積分

已知多項式\(A(x)\),求:
\[ \int A(x)dx \]

思路:同上,直接對每一項積分,\(\int ax^ndx=\frac a{n+1}x^{n+1}\),默認積分後常數為\(0\)

void Int(int *f,int *g,int len){
    for(int i=1;i<len;i++)g[i]=(LL)f[i-1]*ksm(i,mod-2)%mod;
    g[0]=0;
}

多項式求對數

前置知識:多項式求逆+多項式求導+多項式積分。

模板:

void Ln(int *f,int *g,int len){
    static int A[N],B[N];
    Der(f,A,len),Inv(f,B,len);
    int x=log2(len<<1),n=(1<<x);
    fill(A+len,A+n,0),fill(B+len,B+n,0);
    NTT(A,x,1),NTT(B,x,1);
    for(int i=0;i<n;i++)A[i]=(LL)A[i]*B[i]%mod;
    NTT(A,x,-1),Int(A,g,len); 
}

例題

【LGOJ】多項式對數函數

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
    int ret=1;
    while(k){
        if(k&1)ret=(LL)ret*x%mod;
        x=(LL)x*x%mod;
        k>>=1; 
    }
    return ret;
}
void Der(int *f,int *g,int len){
    for(int i=0;i<len;i++)g[i]=(LL)f[i+1]*(i+1)%mod;
    g[len-1]=0;
}
void Int(int *f,int *g,int len){
    for(int i=1;i<len;i++)g[i]=(LL)f[i-1]*ksm(i,mod-2)%mod;
    g[0]=0;
}
void NTT(int *a,int x,int K){
    static int rev[N],lst;
    int n=(1<<x);
    if(n!=lst){
        for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
        lst=n;
    }
    for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1){
        int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
        if(K==-1)wn=ksm(wn,mod-2); 
        for(int j=0;j<n;j+=tmp){
            int w=1;
            for(int k=0;k<i;k++,w=(LL)w*wn%mod){
                int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
                a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
            }
        }
    }
    if(K==-1){
        int inv=ksm(n,mod-2);
        for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
    }
}
void Inv(int *f,int *g,int len){
    static int A[N];
    if(len==1)return g[0]=ksm(f[0],mod-2),void();
    Inv(f,g,len>>1),copy(f,f+len,A);
    int x=log2(len<<1),n=1<<x;
    fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
    NTT(A,x,1),NTT(g,x,1);
    for(int i=0;i<(1<<x);i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
    NTT(g,x,-1),fill(g+len,g+n,0); 
}
void Ln(int *f,int *g,int len){
    static int A[N],B[N];
    Der(f,A,len),Inv(f,B,len);
    int x=log2(len<<1),n=(1<<x);
    fill(A+len,A+n,0),fill(B+len,B+n,0);
    NTT(A,x,1),NTT(B,x,1);
    for(int i=0;i<n;i++)A[i]=(LL)A[i]*B[i]%mod;
    NTT(A,x,-1),Int(A,g,len); 
}
int f[N],g[N];
int main(){
    int n=Getint();
    for(int i=0;i<n;i++)f[i]=Getint();
    int len=ceil(log2(n));
    Ln(f,g,1<<len);
    for(int i=0;i<n;i++)cout<<g[i]<<' ';
    return 0;
}

多項式求自然對數為底的指數函數

前置知識:多項式求對數。

模板:

void Exp(int *f,int *g,int len){
    static int A[N];
    if(len==1)return g[0]=1,void();
    int x=log2(len<<1),n=1<<x;
    Exp(f,g,len>>1);
    fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
    Ln(g,A,len);
    A[0]=(f[0]+1-A[0]+mod)%mod;
    for(int i=1;i<len;i++)A[i]=(f[i]-A[i]+mod)%mod;
    NTT(A,x,1),NTT(g,x,1);
    for(int i=0;i<n;i++)g[i]=(LL)g[i]*A[i]%mod;
    NTT(g,x,-1),fill(g+len,g+n,0);
}

例題:

【LGOJ】多項式指數函數

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
    int ret=1;
    while(k){
        if(k&1)ret=(LL)ret*x%mod;
        x=(LL)x*x%mod;
        k>>=1; 
    }
    return ret;
}
void Der(int *f,int *g,int len){
    for(int i=0;i<len;i++)g[i]=(LL)f[i+1]*(i+1)%mod;
    g[len-1]=0;
}
void Int(int *f,int *g,int len){
    for(int i=1;i<len;i++)g[i]=(LL)f[i-1]*ksm(i,mod-2)%mod;
    g[0]=0;
}
void NTT(int *a,int x,int K){
    static int rev[N],lst;
    int n=(1<<x);
    if(n!=lst){
        for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
        lst=n;
    }
    for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1){
        int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
        if(K==-1)wn=ksm(wn,mod-2); 
        for(int j=0;j<n;j+=tmp){
            int w=1;
            for(int k=0;k<i;k++,w=(LL)w*wn%mod){
                int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
                a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
            }
        }
    }
    if(K==-1){
        int inv=ksm(n,mod-2);
        for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
    }
}
void Inv(int *f,int *g,int len){
    static int A[N];
    if(len==1)return g[0]=ksm(f[0],mod-2),void();
    Inv(f,g,len>>1),copy(f,f+len,A);
    int x=log2(len<<1),n=1<<x;
    fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
    NTT(A,x,1),NTT(g,x,1);
    for(int i=0;i<(1<<x);i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
    NTT(g,x,-1),fill(g+len,g+n,0); 
}
void Ln(int *f,int *g,int len){
    static int A[N],B[N];
    Der(f,A,len),Inv(f,B,len);
    int x=log2(len<<1),n=(1<<x);
    fill(A+len,A+n,0),fill(B+len,B+n,0);
    NTT(A,x,1),NTT(B,x,1);
    for(int i=0;i<n;i++)A[i]=(LL)A[i]*B[i]%mod;
    NTT(A,x,-1),Int(A,g,len); 
}
void Exp(int *f,int *g,int len){
    static int A[N];
    if(len==1)return g[0]=1,void();
    int x=log2(len<<1),n=1<<x;
    Exp(f,g,len>>1);
    fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
    Ln(g,A,len);
    A[0]=(f[0]+1-A[0]+mod)%mod;
    for(int i=1;i<len;i++)A[i]=(f[i]-A[i]+mod)%mod;
    NTT(A,x,1),NTT(g,x,1);
    for(int i=0;i<n;i++)g[i]=(LL)g[i]*A[i]%mod;
    NTT(g,x,-1),fill(g+len,g+n,0);
}
int f[N],g[N];
int main(){
    int n=Getint();
    for(int i=0;i<n;i++)f[i]=Getint();
    int len=ceil(log2(n));
    Exp(f,g,1<<len);
    for(int i=0;i<n;i++)cout<<g[i]<<' ';
    return 0;
}

多項式除法

例題

多項式模板整理