1. 程式人生 > >以OpenGL/ES視角介紹gfx-hal(Vulkan) Framebuffer介面使用

以OpenGL/ES視角介紹gfx-hal(Vulkan) Framebuffer介面使用

文件列表見:Rust 移動端跨平臺複雜圖形渲染專案開發系列總結(目錄)

草稿狀態

Swapchain

The Swapchain is the backend representation of the surface. It consists of multiple buffers, which will be presented on the surface.

A Surface abstracts the surface of a native window, which will be presented on the display.

Backbuffer - Swapchain的後端緩衝區型別

todo: 描述Images和Framebuffer的區別。

/// Swapchain backbuffer type
#[derive(Debug)]
pub enum Backbuffer<B: Backend> {
    /// Color image chain
    Images(Vec<B::Image>),
    /// A single opaque framebuffer
    Framebuffer(B::Framebuffer),
}
複製程式碼

SwapchainConfig

SwapchainConfig定義

/// Contains all the data necessary to create a new `Swapchain`:
/// color, depth, and number of images. /// /// # Examples /// /// This type implements the builder pattern, method calls can be /// easily chained. /// /// ```no_run /// # extern crate gfx_hal; /// # fn main() { /// # use gfx_hal::{SwapchainConfig}; /// # use gfx_hal::format::Format; /// let config = SwapchainConfig::new(100, 100, Format::Bgra8Unorm, 2);
/// # } /// ``` #[derive(Debug, Clone)] pub struct SwapchainConfig { /// Presentation mode. pub present_mode: PresentMode, /// Format of the backbuffer images. pub format: Format, /// Requested image extent. Must be in /// `SurfaceCapabilities::extents` range. pub extent: Extent2D, /// Number of images in the swapchain. Must be in /// `SurfaceCapabilities::image_count` range. pub image_count: SwapImageIndex, /// Number of image layers. Must be lower or equal to /// `SurfaceCapabilities::max_image_layers`. pub image_layers: image::Layer, /// Image usage of the backbuffer images. pub image_usage: image::Usage, } 複製程式碼

初始化SwapchainConfig

let (caps, formats, _present_modes) = surface.compatibility(&physical_device);
println!("formats: {:?}", formats);
let format = formats
    .map_or(f::Format::Rgba8Srgb, |formats| {
        formats
            .iter()
            .find(|format| format.base_format().1 == ChannelType::Srgb)
            .map(|format| *format)
            .unwrap_or(formats[0])
    });

println!("Surface format: {:?}", format);
let swap_config = SwapchainConfig::from_caps(&caps, format);
複製程式碼

建立Swapchain

todo: 描述Render To Texture(RTT)情況的Swapchain建立注意事項。

let (swapchain, backbuffer) = device.create_swapchain(
    &mut surface,
    swap_config,
    None,
);
複製程式碼

RenderPass

建立RenderPass

let render_pass = {
    let attachment = pass::Attachment {
        format: Some(swapchain.format.clone()),
        samples: 1,
        ops: pass::AttachmentOps::new(
            pass::AttachmentLoadOp::Clear,
            pass::AttachmentStoreOp::Store,
        ),
        stencil_ops: pass::AttachmentOps::DONT_CARE,
        layouts: image::Layout::Undefined..image::Layout::Present,
    };

    let subpass = pass::SubpassDesc {
        colors: &[(0, image::Layout::ColorAttachmentOptimal)],
        depth_stencil: None,
        inputs: &[],
        resolves: &[],
        preserves: &[],
    };

    let dependency = pass::SubpassDependency {
        passes: pass::SubpassRef::External..pass::SubpassRef::Pass(0),
        stages: PipelineStage::COLOR_ATTACHMENT_OUTPUT
            ..PipelineStage::COLOR_ATTACHMENT_OUTPUT,
        accesses: image::Access::empty()
            ..(image::Access::COLOR_ATTACHMENT_READ | image::Access::COLOR_ATTACHMENT_WRITE),
    };

    device.create_render_pass(&[attachment], &[subpass], &[dependency])
};
複製程式碼

Framebuffer

建立Framebuffer

let (frame_images, framebuffers) = match swapchain.backbuffer.take().unwrap() {
    Backbuffer::Images(images) => {
        let extent = image::Extent {
            width: swapchain.extent.width as _,
            height: swapchain.extent.height as _,
            depth: 1,
        };
        let pairs = images
            .into_iter()
            .map(|image| {
                let rtv = device
                    .create_image_view(
                        &image,
                        image::ViewKind::D2,
                        swapchain.format,
                        Swizzle::NO,
                        COLOR_RANGE.clone(),
                    )
                    .unwrap();
                (image, rtv)
            })
            .collect::<Vec<_>>();
        let fbos = pairs
            .iter()
            .map(|&(_, ref rtv)| {
                device
                    .create_framebuffer(
                        render_pass.render_pass.as_ref().unwrap(),
                        Some(rtv),
                        extent,
                    )
                    .unwrap()
            })
            .collect();
        (pairs, fbos)
    }
    Backbuffer::Framebuffer(fbo) => (Vec::new(), vec![fbo]),
};

let iter_count = if frame_images.len() != 0 {
    frame_images.len()
} else {
    1 // GL can have zero
};

let mut fences: Vec<B::Fence> = vec![];
let mut command_pools: Vec<hal::CommandPool<B, hal::Graphics>> = vec![];
let mut acquire_semaphores: Vec<B::Semaphore> = vec![];
let mut present_semaphores: Vec<B::Semaphore> = vec![];

for _ in 0..iter_count {
    fences.push(device.create_fence(true));
    command_pools.push(device.create_command_pool_typed(
        &queues,
        pool::CommandPoolCreateFlags::empty(),
        16,
    ));

    acquire_semaphores.push(device.create_semaphore());
    present_semaphores.push(device.create_semaphore());
}
複製程式碼

建立渲染命令

// Rendering
let submit = {
    let mut cmd_buffer = command_pool.acquire_command_buffer(false);
    cmd_buffer.set_viewports(0, &[self.viewport.clone()]);
    cmd_buffer.set_scissors(0, &[self.viewport.rect]);
    cmd_buffer.bind_graphics_pipeline(self.pipeline.pipeline.as_ref().unwrap());
    cmd_buffer.bind_vertex_buffers(
        0,
        Some((self.vertex_buffer.get_buffer(), 0)),
    );
    cmd_buffer.bind_graphics_descriptor_sets(
        self.pipeline.pipeline_layout.as_ref().unwrap(),
        0,
        vec![self.image.desc.set.as_ref().unwrap(), self.uniform.desc.as_ref().unwrap().set.as_ref().unwrap()],
        &[],
    ); //TODO

    {
        let mut encoder = cmd_buffer.begin_render_pass_inline(
            render_pass.as_ref().unwrap(),
            framebuffer,
            self.viewport.rect,
            &[command::ClearValue::Color(command::ClearColor::Float([
                cr, cg, cb, 1.0,
            ]))],
        );
        encoder.draw(0..6, 0..1);
    }

    cmd_buffer.finish()
};
複製程式碼

提交渲染命令到GPU佇列

Render to Texture(RTT)場景到這一步就結束了,通常還會配置Submission執行完成的回撥,方便我們提交下一個Submission。

let submission = Submission::new()
    .wait_on(&[(&*image_acquired, PipelineStage::BOTTOM_OF_PIPE)])
    .signal(&[&*image_present])
    .submit(Some(submit));
queues.queues[0].submit(submission, Some(framebuffer_fence));
複製程式碼

交換前後幀緩衝區

目前來看,渲染到螢幕才需要swapchain.present()

// present frame
swapchain.as_ref().unwrap().present(
    &mut queues.queues[0],
    frame,
    Some(&*image_present),
)
複製程式碼